Строительство и ремонт

Работа центробежной силы инерции. Центробежная сила инерции

Чаще всего силы инерции проявляются статически в давлении, которое какое-либо тело, развивающее силу инерции, оказывает на другое тело, повинное в изменении состояния движения первого тела. Груз, ускоренно поднимаемый кверху, оказывает на платформу вследствие силы инерции дополнительное давление (рис. 23). Наблюдателю, тянущему канат, кажется, что груз тем более «увеличивается в весе», чем с большим ускорением его поднимают.

Рис. 23. «Увеличение веса» при поднятии с ускорением происходит за счет развиваемой телом силы инерции.

Когда давление или натяжение со стороны каких-либо тел вынуждает некоторое движущееся тело отклоняться от прямолинейного пути, мы говорим, что отклоняющееся от прямолинейного пути тело развивает центробежную силу инерции, направленную противоположно центростремительной силе, с которою тела, вызвавшие искривление траектории, давят на движущееся тело или тянут его. По закону равенства действия и противодействия эти две силы численно всегда одинаковы, поэтому центробежная сила определяется формулой

или, что то же:

Центростремительная сила направлена всегда к центру кривизны и приложена к движущемуся телу; центробежная сила равна центростремительной по величине, но направлена в противоположную сторону, т. е. от центра кривизны в сторону выпуклости траектории, и приложена к телам, вызывающим искривление траектории движущегося тела.

Массивный шар, подвешенный на прочной нити, натягивает ее при покое с силой тяжести шара но, будучи приведен в колебание, он натягивает ее с силой большей, чем его тяжесть, на величину развиваемой им центробежной силы инерции:

Автомобиль, проезжающий помосту, несколько прогибающемуся под его тяжестью, давит на мост с силой, превышающей вес автомобиля на величину центробежной силы инерции. Поэтому при прочих равных условиях давление автомобиля на вогнутый мост будет тем более велико, чем больше скорость движения автомобиля. Чтобы избежать действия центробежных сил, мосты делают обычно несколько выпуклыми (рис. 24). В этом случае вес быстро движущихся по мосту машин частью проявляется динамически, сообщая им центростремительное ускорение, направленное вниз; поэтому давление на выпуклый мост быстро проезжающих по нему машин будет меньше их веса.

На закруглениях пути колеса вагонов поезда или трамвая оказывают внешний рельс горизонтальное давление вследствие

Рис. 24 Проезжая по выпуклому мосту, автомобиль давит на моете силой, меньшей своего веса

развиваемой вагоном центробежной силы инерции. Чтобы не происходило опрокидывания вагона, равнодействующая давления, создаваемого весом вагона, и центробежной силы должна быть направлена между рельсами перпендикулярно к поверхности рельса; для этого на закруглениях внешний рельс прокладывают несколько выше внутреннего (рис. 25).

Рис. 25. На закруглениях внешний рельс укладывают выше внутреннего,

По аналогичным причинам конькобежец, описывая окружность, наклоняет свой корпус к центру окружности (рис. 26). Отметим еще раз, что на рис. 25 и 26, как это вообще принято в данном курсе, волнистыми стрелками показаны статические проявления сил (в первом случае - сил, приложенных к рельсу, во втором - ко льду). На рис. 26, кроме того, показано, как реакция опоры и вес конькобежца обеспечивают в сумме центростремительную силу, которая приложена к центру инерции конькобежца и проявляется динамически в центростремительном ускорении при движении конькобежца по дуге окружности. Точно таким же построением можно было бы дополнить и рис. 25. Центростремительное ускорение, обеспечивающее движение вагона по закруглению пути, при правильном подъеме наружного рельса (как и в случае, изображенном на рис. 26) создается за счет геометрической суммы реакции рельсов и веса вагона. Наклон полотна хотя и не устраняет горизонтальной составляющей давления колес на рельсы, но снижает (при правильном угле наклона - до нуля) боковое давление бандажей, параллельное плоскости шпал. Если бы наружный рельс не был приподнят и, таким образом, на закруглениях вагон двигался бы строго вертикально, то, кроме тенденции к опрокидыванию, развивались бы большие силы, смещающие крепление рельсов к шпалам; в этом случае центростремительная сила на закруглениях пути создавалась бы за счет указанных сил, стремящихся оторвать наружный рельс, тогда как при правильном наклоне полотна никаких смещающих сил в плоскости полотна нет, так как итоговое давление на рельсы перпендикулярно к этой плоскости,

В случаях, подобных представленному на рис. 26, центростремительная сила приложена к центру тяжести движущегося тела, а точки приложения центробежной силы определяются геометрическими условиями соприкосновения движущегося тела с телом, к которому приложена центробежная сила и противодействие которого обеспечивает кривизну траектории; поэтому указанные

численно равные силы хотя и направлены, как действие и противодействие, антипараллельно, но не по одной прямой.

Вещество вращающегося твердого тела находится в напряженном состоянии, так как каждая частица вращающегося тела развивает центробежную силу инерции, приложенную к смежным частицам тела, препятствующим рассматриваемой частице удалиться от оси вращения. Силы инерции, направленные по радиусу от центра, стремятся оторвать внешние слои вещества от внутренних.

Рис. 26 Описывая дугу окружности, конькобежец наклоняет свой корпус так, чтобы реакция льда проходила через центр тяжести тела, тогда равнодействующая реакции R и веса дает центростремительную силу

Если прочность вещества недостаточна, то при большой скорости вращения центробежные силы инерции разрушают тело, разрывая его на части. Во избежание подобных аварий все быстро вращающиеся части машин (роторы) и быстроходные маховики изготовляют из наиболее прочных металлов (обычно из стали).

О величине центробежных сил инерции во вращающихся частях машин можно судить по следующему примеру. Ротор одного из гирокомпасов при диаметре 12 см и весе 2,5 кг делает 20 000 об/мин. Центробежная сила, развиваемая на его ободе какой-либо массой, в 25 тысяч раз превышает вес этой массы.

Силы инерции часто оказывают разрушительное действие на отдельные части машин. Когда колесо насажено на ось так, что вся масса его распределена симметрично относительно оси вращения, то центробежные силы инерции, развиваемые отдельными частицами колеса, уравновешиваются на оси вращения и сказываются только в упругом натяжении вещества колеса. При очень больших скоростях это натяжение может привести к разрыву колеса. Но если масса колеса распределена относительно оси вращения несимметрично, то уже при сравнительно небольших скоростях центробежные силы инерции, которые в этом случае не уравновешиваются на оси, могут привести к поломке оси.

У колес паровоза несимметричное распределение сил инерции способно создать одностороннее давление на ось в несколько тонн; в связи с этим при вращении такого колеса давление колеса на рельс то возрастает (когда результирующая неуравновешенных центробежных сил направлена вниз), то убывает (когда она направлена вверх) - рельс как бы находится под действием ударов тяжелого молота.

При проектировании какой-либо новой машины производят детальный расчет сил инерции, которые могут возникнуть в ней при различных условиях ее работы. С проявлением неуравновешенных сил инерции приходится вести борьбу посредством точного распределения масс и согласования движений отдельных частей машины.

Но силы инерции, в частности центробежные силы, имеют в технике также и положительное применение, весьма обширное и разнообразное (работа молотов, центробежные машины, центрифуги и т. д.).

Заметим, что термин «центробежная сила» не вполне удачен; он наталкивает на неправильное понимание этой силы. Термин «центробежная сила» побуждает думать о движении от центра вращения по радиусу. Хотя центробежная сила и действует по радиусу от центра, но никакого движения в этом направлении она не вызывает и не способна вызвать потому, что она приложена к связям. Если связи, удерживавшие тело на неизменном расстоянии от центра, вдруг устранены (например, разорвалась веревка, к которой привязан камень, вращаемый нами по окружности), то двигавшееся по окружности тело будет удаляться от центра окружности, конечно, не по радиусу, а по касательной к окружности, так как оно по инерции сохранит то направление скорости, которое имело в момент разрыва связей.

Лабораторная работа № 21

ЦЕНТРОБЕЖНАЯ СИЛА

Цель работы:

Изучение законов механики в неинерциальной системе отсчета, вращающейся относительно инерциальной. Исследование зависимости величины центробежной силы от массы тела, угловой скорости и расстояния до оси вращения.

Оборудование:

Электромотор, вращающаяся платформа с тележкой, нить, динамометр, компьютерный интерфейс Cobra3, компьютер, набор грузов.

Продолжительность работы – 4 часа.

Теоретическая часть.

1. Инерциальные системы отсчета и законы механики Ньютона

Динамикой называется раздел механики, изучающий причины возникновения механического движения. Многовековые наблюдения позволяют сделать вывод, что определяющую роль здесь играет взаимодействие тел . Его количественной характеристикой является сила:

Сила – векторная физическая величина, мера взаимодействия тел.

Исторически сложилось так, что многочисленные эксперименты по выяснению связи между взаимодействием тел и характером механического движения проводились в системе отсчета, связанной с Землёй. В ходе этих экспериментов было установлено, что тело, не испытывающее воздействия со стороны других тел, сохраняет состояние покоя или равномерного прямолинейного движения. Однако нетрудно видеть, что в других системах отсчета это утверждение может оказаться неверным. Например, в системе отсчета, связанной с разгоняющимся автомобилем, объекты, находящиеся за окном – деревья, здания и т.п., – движутся ускоренно в сторону, противоположную направлению движения автомобиля, хотя сумма действующих на них сил остаётся равной нулю. Таким образом, прежде чем сформулировать законы динамики, необходимо дать определение систем отсчета, о которых будет идти речь в этих законах:

Первый закон Ньютона : Существуют системы отсчета, называемые инерциальными , в которых тела сохраняют состояние покоя или равномерного прямолинейного движения при отсутствии действий на них со стороны других тел или при взаимной компенсации этих воздействий.

Все остальные системы отсчета называются неинерциальными .

Воздействие на данное тело со стороны других тел вызывает изменение его скорости, т.е. сообщает ему ускорение. Однако одинаковое воздействие сообщает разным телам разные ускорения, т.е. тела по-разному сопротивляются попыткам изменить их состояние движения. Это свойство тел называют инертностью .

Массой m называется скалярная физическая величина, являющаяся мерой инертности тела.

Второй закон Ньютона : Произведение массы тела на его ускорение равно действующей на него силе .

Подведём итоги:

· Законы механики Ньютона выполняются только в инерциальных системах отсчета.

· Единственной причиной ускоренного движения тела в инерциальной системе являются силы, действующие на него со стороны других тел.

· Если , то согласно (1) ускорение тела также будет равно нулю. Этот вывод совпадает со второй частью формулировки первого закона Ньютона. Тем не менее, его нельзя считать следствием второго закона, поскольку главным содержанием первого закона является постулат о существовании инерциальных систем отсчёта.

2. Неинерциальные системы отсчета

Можно показать, что любая система отсчета, движущаяся прямолинейно и равномерно относительно инерциальной системы, также является инерциальной (см. например, , §2.7). Из этого утверждения следует, что неинерциальной системой отсчёта является любая система, движущаяся ускоренно относительно инерциальной. Простейшими неинерциальными системами отсчета являются системы, движущиеся ускоренно прямолинейно и вращающиеся системы.

Вернёмся к рассмотренному выше примеру с разгоняющимся автомобилем. Система отсчета, связанная с ним, очевидно, является неинерциальной. Второй закон Ньютона, записанный в форме (1), в данной системе отсчета не выполняется: ускоренное движение зданий и деревьев в этой системе не является результатом действия на них каких-либо сил со стороны других тел. Будем считать, что эти ускорения вызваны действием сил особой природы, называемых силами инерции . Их существование обусловлено ускоренным движением неинерциальной системы отсчета относительно инерциальной. С учетом сказанного второй закон Ньютона в неинерциальной системе отсчета примет следующий вид:

где – ускорение тела в неинерциальной системе отсчета; – «обычные» силы, обусловленные взаимодействием тел; – силы инерции .

Отметим главные особенности сил инерции:

· Введение сил инерции даёт возможность описывать движение тел в любых системах отсчета с помощью одних и тех же уравнений движения.

· Силы инерции обусловлены не воздействием на тело со стороны других тел, а свойствами той системы отсчёта, в которой рассматриваются механические явления. В этом смысле их можно назвать «фиктивными».

3. Центробежная сила

В данной лабораторной работе исследуются силы инерции, возникающие в неинерциальной системе отсчета, вращающейся относительно лабораторной инерциальной системы. Экспериментальная установка представляет собой платформу, вращающуюся с постоянной угловой скоростью ω вокруг перпендикулярной к ней вертикальной оси Z (см. Рис. 1, а). Вместе с платформой вращается привязанная к оси вращения небольшая тележка. Свяжем с платформой подвижную систему отсчёта с осями , как это показано на рисунке. Эта система вращается относительно лабораторной инерциальной системы K с осями X , Y , Z , а значит, является неинерциальной. Рассчитаем силу инерции, действующую на тележку в этой системе отсчета.

Тележка представляет собой твердое тело сложной формы, размерами которого в условиях данной задачи пренебречь нельзя. Поэтому сначала определим силу инерции, действующую в данной неинерциальной системе отсчета на материальную точку, а затем обобщим полученный результат для случая твёрдого тела.

Рис. 1 – Схематическое изображение экспериментальной установки: а) в лабораторной (инерциальной) системе отсчета; б) в неинерциальной системе отсчета, вращающейся относительно инерциальной.

1. Рассмотрим небольшой груз массы m , подобно тележке привязанный к оси вращения нерастяжимой невесомой нитью и вращающийся вместе с платформой. На Рис.1 этот груз схематически изображён слева от оси вращения. Сила тяжести скомпенсирована реакцией опоры, поэтому её в дальнейших рассуждениях рассматривать не будем. В K -системе груз движется по окружности с постоянной скоростью. Так как направление вектора скорости непрерывно изменяется, это движение является ускоренным. Ускорение направлено к оси вращения и называется центростремительным . Его величина:

(3)

где V – линейная скорость, ω – угловая скорость, а r – расстояние до оси вращения. Связанная с данным ускорением сила также называется центростремительной и по второму закону Ньютона:

(4)

В ситуации, изображённой на Рис. 1 а, в роли центростремительной силы выступает сила натяжения нити :

В системе отсчета (см. Рис. 1, б) груз покоится, а значит, его ускорение равно нулю. Запишем уравнение второго закона Ньютона для неинерциальных систем (2), учитывая силу инерции:

(6)

Тогда для силы инерции получим:

; (7)

Эта сила инерции называется центробежной силой . Перечислим её главные особенности:

· Центробежная сила – сила инерции, которую необходимо вводить в уравнение второго закона Ньютона при описании движения в неинерциальной системе отсчета, вращающейся с постоянной угловой скоростью относительно инерциальной.

· Вектор центробежной силы направлен от оси вращения.

· Величина центробежной силы задаётся уравнением

Пусть – радиус-вектор, проведенный в неинерциальной системе отсчета к материальной точке от оси вращения. Тогда выражение для центробежной силы можно записать в векторной форме:

2. Центробежная сила, действующая на тележку, равна сумме сил, действующих на составляющие её материальные точки:

(10)

Разделим и умножим на массу тележки m и вынесем за знак суммы одинаковый для всех точек квадрат угловой скорости. В результате получим:

(11)

Выражение

задает координаты центра масс тележки в плоскости XY . Таким образом, центробежная сила, действующая на тележку, определяется по формуле:

А её абсолютное значение:

где r C – расстояние от оси вращения до центра масс тележки. Экспериментальной проверке этого соотношения и посвящена данная лабораторная работа.


Описание установки

Внешний вид экспериментальной установки показан на Рис. 2. Источником вращательного движения является электромотор (1) с возможностью регулировки скорости и направления вращения. Через передаточный ремень (2) вращение передаётся платформе (3) с установленной на ней тележкой (4). Для измерения расстояния от центра масс тележки до оси вращения на платформу нанесена сантиметровая шкала (5). К тележке привязана нить (6), которая через блок (7), отверстие в верхней части платформы и подвижный карабин подсоединена к динамометру (8), непрерывно измеряющему силу натяжения нити. Измеряемый сигнал через интерфейс Cobra3 (9) подаётся на персональный компьютер.

Рис. 2 – Внешний вид установки для измерения величины центробежной силы

Как описано в теоретической части, в идеальном случае сила натяжения нити должна быть равна центробежной силе. Однако в реальной экспериментальной установке выходное отверстие нити в верхней части платформы немного смещено относительно оси вращения. Это сделано намеренно: такая конструкция установки позволяет измерять не только центробежную силу, но и угловую скорость вращения. В самом деле, смещение приводит к тому, что в процессе вращения расстояние от верхнего отверстия до динамометра периодически изменяется. Вследствие этого периодически изменяется и сила натяжения нити, причём частота этого изменения совпадает с частотой вращения платформы. Таким образом, измерив зависимость силы натяжения от времени, мы сможем точно определить как частоту, так и угловую скорость вращения. В свою очередь центробежная сила будет равна среднему по времени значению силы натяжения.


Экспериментальная часть

Упражнение 1. Изучение зависимости центробежной силы от массы.

1. Установите на платформу пустую тележку без грузов. Закрепите нить на тележке таким образом, чтобы при натянутой нити центр тяжести тележки располагался на расстоянии 20 см от оси вращения. Следите за тем, чтобы нить была надета на жёлтый шкив.

2. Включите компьютер. Для входа в операционную систему используйте логин «Student ». Запустите программу Measure двойным щелчком по ярлыку на рабочем столе.

3. Согласно алгоритму, изложенному в Приложении 1, измерьте значения периода вращения и центробежной силы и занесите их в Таблицу 1 (масса пустой тележки 50 г). Определите погрешность величины исходя из характеристик установки и методики измерения. Погрешность измерения силы принять равной .

Таблица 1

Масса тележки с грузом m , кг Центробежная сила F , Н Период T , с Угловая скорость ω , рад/с , кг/с 2 ∆(), кг/с 2
0,05
0,07
0,19

4. Постепенно нагружая тележку с шагом 20 г, повторите измерения периода вращения и центробежной силы (п.п. 6÷10).

5. Для корректного измерения зависимости центробежной силы от массы период вращения во всех измерениях должен оставаться постоянным. Однако, частота вращения в установке регулируется достаточно грубо, и поэтому период вращения в различных измерениях может немного различаться. Это необходимо учитывать. Для каждого измерения по формуле рассчитайте угловую скорость, величину и её погрешность. При этом погрешность измерения массы можно считать равной . Результаты измерений занесите в Таблицу 1.

6. Постройте график зависимости центробежной силы от величины . По согласованию с преподавателем построение графиков можно проводить как на миллиметровой бумаге, так и на компьютере с помощью программы Measure . Процедура построения графика с помощью компьютера подробно описана в Приложении 2 .

7. Согласно формуле (14) построенная зависимость должна быть линейной. Определите угловой коэффициент прямой и сравните его с расстоянием от оси вращения до центра тяжести тележки. Сделайте вывод.

Рассмотрим два случая проявления центробежной силы инерции.

Пример 1. Рассмотрим вращающийся диск с закрепленными на нем стойками с шариками, подвешенными на нитях (рис.2). При вращении диска с постоянной угловой скоростью w шарики отклоняются на некоторый угол, тем больший, чем дальше он находится от оси вращения. Относительно инерциальной системы отсчета (неподвижной) все шарики движутся по окружности соответствующего радиуса R , при этом на шарики действует результирующая сила (рис.3).

Рис.2

Рис.3

Согласно второму закону Ньютона

учитывая, что F /P =tgα, можно записать

т.е. угол отклонения шарика зависит от угловой скорости и от его удаления от оси вращения диска.

Относительно неинерциальной системы отсчета, связанной с вращающимся диском, шарик находится в покое.

Это возможно в том случае, если сила (8) уравновешена силой инерции , называемой центробежной силой инерции :

Пример 2. Рассмотрим диск, вращающийся вокруг перпендикулярной к нему вертикальной оси z с угловой скоростью ω. Вместе с диском вращается надетый на тонкую спицу шарик, соединенный с центром диска пружиной (рис. 4).

Рис.4

Шарик занимает на стержне некоторое положение, при котором сила натяжения пружины (она будет центростремительной) оказывается равной произведению массы шарика m на его ускорение:

где – нормальное ускорение на шарике; r – расстояние от оси вращения до центра шарика.

Относительно системы отсчета, связанной с диском, шарик покоится. Это формально можно объяснить тем, что кроме силы упругости на шарик действует сила инерции, модуль которой равен силе упругости (7):

Сила инерции направлена вдоль радиуса от центра диска. Силу инерции (8), возникающую в равномерно вращающейся системе отсчета, называют центробежной силой инерции . Эта сила действует на тело во вращающейся системе отсчета, независимо от того, покоится тело в этой системе или движется относительно нее со скоростью . Если положение тела во вращающейся системе отсчета характеризовать радиус-вектором , то центробежную силу можно представить в виде

где – компонента радиус-вектора, направленная перпендикулярно оси вращения.

Центробежные силы , как и всякие силы инерции, существуют только в ускоренно движущихся (вращающихся) системах отсчета и исчезают при переходе к инерциальным системам отсчета.

Действию центробежной силы подвергается, например, пассажир в движущемся автобусе на поворотах. Если в центробежной машине подвесить на нитях несколько шариков и привести машину в быстрое вращение, то центробежные силы инерции отклонят шарики от оси вращения. Угол отклонения тем больше, чем дальше шарик отстоит от оси. Центробежные силы используются в центробежных сушилках для отжима белья, в сепараторах для отделения сливок от молока, в центробежных насосах, центробежных регуляторах и т.д. Их надо учитывать при проектировании быстровращающихся деталей механизмов.

Формулы

Обычно понятие центробежной силы используется в рамках классической (Ньютоновской) механики , которой касается основная часть данной статьи (хотя обобщение этого понятия и может быть в некоторых случаях достаточно легко получено для релятивистской механики).

По определению, центробежной силой называется сила инерции (то есть в общем случае - часть полной силы инерции) в неинерциальной системе отсчета, не зависящая от скорости движения материальной точки в этой системе отсчета, а также не зависящая от ускорений (линейных или угловых) самой этой системы отсчета относительно инерциальной системы отсчета.

Для материальной точки центробежная сила выражается формулой:

- центробежная сила приложенная к телу, - масса тела, - угловая скорость вращения неинерциальной системы отсчёта относительно инерциальной (направление вектора угловой скорости определяется по правилу буравчика), - радиус-вектор тела во вращающейся системе координат.

Эквивалентное выражение для центробежной силы можно записать как

если использовать обозначение для вектора, перпендикулярного оси вращения и проведенного от неё к данной материальной точке.

Центробежная сила для тел конечных размеров может быть рассчитана (как это обычно делается и для любых других сил) суммированием центробежных сил, действующих на материальные точки, являющиеся элементами, на которые мы мысленно разбиваем конечное тело.

Вывод

Следует иметь в виду, что для правильного описания движения тел во вращающихся системах отсчёта, кроме центробежной силы следует также вводить силу Кориолиса .

В литературе встречается и совсем другое понимание термина «центробежная сила». Так иногда называют реальную силу, приложенную не к совершающему вращательное движение телу, а действующую со стороны тела на ограничивающие его движение связи. В рассмотренном выше примере так называли бы силу, действующую со стороны шарика на пружину. (См., например, ниже ссылку на БСЭ.)

Центробежная сила как реальная сила

Центростремительная и центробежная силы при движении тел по круговым траекториям с общей осью вращения

Применяемый не к связям, а, наоборот, к поворачиваемому телу, как объекту своего воздействия, термин «центробежная сила» (букв. cила, приложенная к поворачивающемуся или вращающемуся материальному телу, заставляющего его бежать от мгновенного центра поворота), есть эвфемизм, основанный на ложном толковании первого закона (принципа Ньютона) в форме:

Всякое тело сопротивляется изменению своего состояния покоя или равномерного прямолинейного движения под действием внешней силы

Всякое тело стремится сохранять состояние покоя или равномерного прямолинейного движения до тех пор, пока не подействует внешняя сила.

Отголоском этой традиции и является представление о некоей силе , как о материальном факторе, реализующем это сопротивление или стремление. О существовании такой силы уместно было бы говорить, если бы, например, вопреки действующим силам, движущееся тело сохраняло бы свою скорость, но это не так .

Использование термина «центробежная сила» правомочно тогда, когда точкой её приложения является не испытывающее поворот тело, а ограничивающее его движение связи. В этом смысле центробежная сила представляет собой один из членов в формулировке третьего закона Ньютона, антагониста центростремительной силе, вызывающей поворот рассматриваемого тела и к нему приложенной. Обе эти силы равны по величине и противоположны по направлению, но приложены к разным телам и потому не компенсируют друг друга, а вызывают реально ощутимый эффект - изменение направление движения тела (материальной точки).

Оставаясь в инерциальной системе отсчёта , рассмотрим два небесных тела, например, компонента двойной звезды с массами одного порядка величины и , находящихся на расстоянии друг от друга. В принятой модели эти звёзды рассматриваются как материальные точки и есть расстояние между их центрами масс. В роли связи между этими телами выступает сила Всемирного тяготения , где - гравитационная постоянная. Это - единственная здесь действующая сила, она вызывает ускоренное движение тел навстречу друг другу.

Однако, в том случае, если каждое из этих тел совершает вращение вокруг общего центра масс с линейными скоростями = и = , то подобная динамическая система будет неограниченное время сохранять свою конфигурацию, если угловые скорости вращения этих тел будут равны: = = , а расстояния от центра вращения (центра масс) будут соотноситься, как: = , причём , что непосредственно следует из равенства действующих сил: и , где ускорения равняются соответственно: = и .

Центростремительные силы, вызывающие движение тел по круговым траекториям равны (по модулю): =. При этом первая из них является центростремительной, а вторая - центробежной и наоборот: каждая из сил в соответствии с Третьим законом является и той, и другой.

Поэтому, строго говоря, использование каждого из обсуждаемых терминов излишне, поскольку они не обозначают никаких новых сил, являясь синонимами единственной силы - силы тяготения. То же самое справедливо и в отношении действия любой из упомянутых выше связей.

Однако, по мере изменения соотношения между рассматриваемыми массами, то есть всё более значительного расхождения в движении обладающих этими массами тел, разница в результатах действия каждой из рассматриваемых тел для наблюдателя становится всё более значительной.

В ряде случаев наблюдатель отождествляет себя с одним из принимающих участие тел, и потому оно становится для него неподвижным. В этом случае при столь большом нарушении симметрии в отношении к наблюдаемой картине, одна из этих сил оказывается неинтересной, поскольку практически не вызывает движения.

См. также

Примечания

Ссылки

  • Матвеев А. Н. Механика и теория относительности: Учебник для студентов вузов. - 3-е издание. - М.: ООО "Издательский дом «ОНИКС 21 век»: ООО "Издательство «Мир и образование», 2003. - с. 405-406

Проявление центробежной силы инерции можно рассмотреть на примерах.

Пример 1. Имеется диск с закрепленными на нем стойками с шариками, подвешенными на нитях. При вращении диска с постоянной угловой скоростью w шарики отклоняются на некоторый угол, тем больший, чем дальше он находится от оси вращения (рис.2). Относительно инерциальной системы отсчета (неподвижной) все шарики движутся по окружности соответствующего радиуса R , при этом на шарики действует результирующая сила (рис.3).

Рис.2

Рис.3

Согласно второму закону Ньютона

угол отклонения можно оценить из F /P =tgα,

т.е. угол отклонения шарика зависит от угловой скорости и от его удаления от оси вращения диска.

Относительно неинерциальной системы отсчета, связанной с вращающимся диском, шарик находится в покое.

Это возможно в том случае, если сила (8) уравновешена силой инерции , называемой центробежной силой инерции, которая равна :

Пример 2. Рассмотрим диск, вращающийся вокруг перпендикулярной к нему вертикальной оси z с угловой скоростью ω. Вместе с диском вращается надетый на тонкую спицу шарик, соединенный с центром диска пружиной (рис. 4).

Рис.4

Шарик занимает на стержне некоторое положение, при котором сила натяжения пружины (она будет центростремительной) оказывается равной произведению массы шарика m на его ускорение:

где – нормальное ускорение на шарике; r – расстояние от оси вращения до центра шарика.

Относительно системы отсчета, связанной с диском, шарик покоится. Это формально можно объяснить тем, что кроме силы упругости на шарик действует сила инерции, модуль которой равен силе упругости (7):

Сила инерции (8), возникающая в равномерно вращающейся системе отсчета, называется центробежной силой инерции . Сила инерции направлена вдоль радиуса от центра диска. Эта сила действует на тело во вращающейся системе отсчета, независимо от того, покоится тело в этой системе или движется относительно нее со скоростью . Если положение тела во вращающейся системе отсчета характеризовать радиус-вектором , то центробежную силу можно представить в виде



где – компонента радиус-вектора, направленная перпендикулярно оси вращения.

Центробежные силы , как и всякие силы инерции, существуют только в ускоренно движущихся (вращающихся) системах отсчета и исчезают при переходе к инерциальным системам отсчета.

Центробежные силы инерции проявляются в движущемся автобусе на поворотах, используются в центробежных сушилках для отжима белья, в сепараторах для отделения сливок от молока, в центробежных насосах, центробежных регуляторах и т.д. Их надо учитывать при проектировании быстровращающихся деталей механизмов.

Сила Кориолиса.

Если тело движется относительно вращающейся системы отсчета, кроме центробежной силы, на него действует еще одна сила, называемая силой Кориолиса .

Рассмотрим рис.5. Шарик массой m движется прямолинейно со скоростью от центра к краю диска. Если диск неподвижен, то шарик попадает в точку М , а если диск вращается с постоянной угловой скоростью ω, то шарик попадает в точку N . Это обусловлено тем, что на шарик действует сила Кориолиса.

Рис.5

Появление силы Кориолиса можно обнаружить, если рассмотреть пример с шариком на спице на вращающемся диске, но без пружины. Для того чтобы заставить шарик двигаться с некоторой скоростью вдоль спицы, необходима боковая сила. Шарик вращается вместе с диском с постоянной угловой скоростью w, поэтому его момент импульса равен:

Если шарик будет перемещаться вдоль спицы с постоянной скоростью , то с изменением момент импульса шарика изменится. А это означает, что на движущееся во вращающейся системе тело должен действовать некоторый момент силы, который согласно основному уравнению динамики вращательного движения равен

Для того, чтобы заставить шарик двигаться по вращающемуся диску вдоль радиальной прямой со скоростью , необходимо прилагать боковую силу

направленную перпендикулярно . Относительно вращающейся системы (диска) шарик движется с постоянной скоростью.

Это можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной к скорости (рис.6). Сила и есть Кориолисова сила инерции. Она определяется выражением

Рис.6

С учетом направления силу Кориолиса можно представить в виде

Сила Кориолиса всегда перпендикулярна скорости тела . Во вращающейся системе отсчета при = 0 эта сила отсутствует. Таким образом, Кориолисова сила инерции возникает только тогда, когда система отсчета вращается, а тело движется относительно этой системы. Действием силы Кориолиса объясняется ряд эффектов, наблюдающихся на поверхности Земли, например, поворот плоскости колебаний маятника Фуко относительно Земли, отклонение к востоку от линии отвеса свободно падающих тел, размытие правого берега рек в северном полушарии и левого в южном, неодинаковый износ рельсов при двухколейном движении.

Сила Кориолиса действует только на тела, которые движутся относительно вращающейся системы отсчета, чаще всего рассматривается случай относительно Земли. Действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север (рис. 4), то действующая на него сила Кориолиса, как это следует из выражения (4), будет направлена вправо по отношению к направлению движения, т. е. тело несколько отклонится на восток. Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т. е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, и т. д. Также можно показать, что в южном полушарии сила Кориолиса, которая действует на движущиеся тела, направлена влево по отношению к направлению движения.

Рис.4

Благодаря действию силы Кориолиса падающие на поверхность Земли предметы отклоняются к востоку (на широте 60° это отклонение должно составлять 1 см при падении с высоты 100 м). С силой Кориолиса связано движение маятника Фуко, которое явилось в свое время одним из доказательств вращения Земли. Если бы силы Кориолиса не было, то тогда плоскость колебаний качающегося вблизи поверхности Земли маятника оставалась бы неизменной (относительно Земли). Действие же данной силы приводит к вращению плоскости колебаний вокруг вертикального направления.

где силы инерции задаются формулами (2) - (4).

Еще раз подчеркнем, что силы инерции вызываются не взаимодействием тел, а ускоренным движением системы отсчета. По этой причине они не подчиняются третьему закону Ньютона, так как если на тело действует сила инерции, то не существует силы, противодействующей ей и приложенной к данному телу. Два основных положения механики, по которым ускорение всегда вызывается силой, а сила всегда обусловлена взаимодействием между телами, в системах отсчета, движущихся с ускорением, одновременно не выполняются.

Для любого из тел, которые находятся в неинерциальной системе отсчета, силы инерции являются внешними; Значит, здесь нет замкнутых систем, т.е. в неинерциальных системах отсчета не выполняются также и законы сохранения импульса, энергии и момента импульса. Значит, силы инерции действуют только в неинерциальных системах отсчета. В инерциальных системах отсчета таких сил не существует.

Возникает вопрос о реальном или фиктивном существовании сил инерции . В ньютоновской механике, в которой сила является результатом взаимодействия тел, на силы инерции можно смотреть как на не существующие в инерциальных системах отсчета или фиктивные . Однако возможна и другая их интерпретация. Поскольку взаимодействия тел осуществляются посредством силовых полей, то силы инерции рассматриваются как воздействия, которым подвергаются тела со стороны каких-то реальных силовых полей, и тогда их можно считать реальными. Независимо рассмотрения сил инерции в качестве реальных или фиктивных, многие явления, упоминающиеся в настоящем параграфе, объясняются с помощью сил инерции.

Силы инерции, которые действуют на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Значит в поле сил инерции эти тела движутся абсолютно одинаково, если только одинаковы начальные условия. Тем же свойством обладают тела, которые находятся под действием сил поля тяготения.

Возможны условия, при которых силы инерции и силы тяготения невозможно различить. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле сил инерции от однородного поля тяготения.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности сил инерции и гравитационных сил (принципа эквивалентности Эйнштейна): все физические явления в поле тяготения происходят так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а остальные начальные условия для рассматриваемых тел одинаковы. Этот принцип является основой общей теории относительности.