Строительство и ремонт

Мир в ореховой скорлупке с хокинг. Стивен Хокинг «Мир в ореховой скорлупке

Мир в ореховой скорлупке

О том, что Вселенная имеет множество историй,

каждая из которых

определяется крошечным орешком

Я бы и в ореховой скорлупе считал себя

властелином необъятного пространства.

У Шекспир. Гамлет. Акт 2, сцена 2

Гамлет мог иметь в виду, что хотя мы, люди, существа весьма ограниченные физически, наш разум свободен в своем стремлении познать весь мир и смело отправляется туда, куда не рисковали забираться даже герои «Звездного пути», - позволены самые страшные сны.

Действительно ли Вселенная бесконечна или просто очень велика? Вечна ли она или просто имеет большое время жизни? Как может наш конечный ум познать бесконечную Вселенную? Не слишком ли большая самоуверенность даже предпринимать такую попытку? Не рискуем ли мы повторить судьбу Прометея, который согласно классическому мифу украл у Зевса огонь и научил им пользоваться людей, а в наказание за безрассудную смелость был прикован к скале и стал добычей орла, прилетавшего выклевывать его печень?

Космический телескоп «Хаббл».

Вопреки предостережению, заключенному в легенде, я верю, что мы можем и должны пытаться понять Вселенную. Мы уже достигли замечательных успехов в понимании космоса, особенно в последние годы. У нас еще нет полной картины, но, возможно, она уже не за горами.

Самый очевидный факт относительно космоса состоит в том, что он тянется и тянется все дальше и дальше. Это подтверждают современные инструменты, такие как телескоп «Хаббл», который позволяет нам заглянуть в глубочайший космос. Там мы видим миллиарды и миллиарды галактик различных форм и размеров (рис. 3.1).

Когда мы смотрим в глубины Вселенной, то видим миллиарды и миллиарды галактик. Галактики могут иметь разные формы и размеры; они могут быть эллиптическими или спиральными, подобно нашему Млечному Пути.

Наша планета Земля (3) обращается вокруг Солнца в периферийном районе спиральной галактики Млечный Путь. Межзвездная пыль в спиральных рукавах мешает нам вести наблюдения в направлении плоскости Галактики, но по сторонам от нее открывается хороший обзор.

Каждая галактика содержит неисчислимые миллиарды звезд, и у многих из них есть планеты. Мы живем на планете, обращающейся вокруг звезды во внешнем рукаве спиральной галактики Млечный Путь. Пыль в спиральных рукавах мешает нам наблюдать Вселенную вблизи плоскости галактики, но в направлении двух конусов по сторонам от этой плоскости видимость отличная, и мы можем определять положения далеких галактик (рис. 3.2). Мы обнаружили, что галактики распределены в космосе приблизительно однородно с отдельными локальными сгущениями и пустотами. Кажется, что плотность галактик на очень больших расстояниях снижается, но, скорее всего, из-за удаленности их свет становятся настолько слабым, что мы просто их не регистрируем. Насколько мы можем судить, Вселенная тянется в пространстве бесконечно (рис. 3.3).

Мы видим, что, за исключением отдельных локальных сгущений, галактики распределены в пространстве почти однородно.

Хотя Вселенная во всех точках космоса выглядит почти одинаково, она определенно меняется во времени. До начала ХХ века это не осознавалось - считали, что в основном она неизменна. Ей полагалось существовать в течение бесконечного времени, но это приводило к абсурдным выводам. Если ли бы звезды светили бесконечно долго, они должны были бы прогреть Вселенную до своей температуры. Даже в ночное время все небо светилось бы так же ярко, как Солнце, поскольку в любом направлении взгляд в конце концов упирался бы либо в звезду, либо в пылевое облако, разогретое до той же температуры, что и звезды (рис. 3.4).

Если бы Вселенная была статичной и бесконечной во всех направлениях, повсюду на ночном небе взгляд упирался бы в звезды и оно светилось бы так же ярко, как поверхность Солнца.

Все мы наблюдали ночное небо и знаем, что оно темное, и это очень важно. Отсюда следует, что Вселенная не может вечно пребывать в том же состоянии, что и сегодня. В прошлом, конечное время назад, должно было произойти нечто, что заставило звезды зажечься, а это значит, что свет очень далеких звезд еще не успел до нас дойти. Потому-то небо по ночам не ослепляет нас со всех сторон.

Но если звезды вечно находились на своих местах, почему они вдруг зажглись несколько миллиардов лет назад? Какой таймер сообщил им, что пришло время светиться? Как мы знаем, над этим ломали голову многие философы, которые, подобно Иммануилу Канту, верили, что Вселенная существует вечно. Однако большинство людей вполне устраивала мысль о том, что Вселенная была создана всего несколько тысяч лет назад в целом такой, какова она сейчас.

Расхождения с этим представлением стали появляться благодаря наблюдениям Весто Слайфера и Эдвина Хаббла во втором десятилетии ХХ века. А в 1923 г. Хаббл открыл, что многочисленные едва заметные пятнышки на небе, называемые туманностями, на самом деле являются другими галактиками, огромными конгломератами таких же звезд, как наше Солнце, но находящихся на огромном расстоянии. Чтобы они выглядели такими маленькими и бледными, расстояния должны быть столь велики, что свету понадобятся миллионы или даже миллиарды лет, чтобы дойти до нас. Это значит, что Вселенная не могла появиться лишь несколько тысяч лет назад.

Второе открытие Хаббла было еще более замечательным. Астрономы знают, что, анализируя свет других галактик, можно определить, движутся ли они к нам или от нас (рис. 3.5). К их огромному удивлению, оказалось, что почти все галактики удаляются. Более того, чем дальше находятся галактики, тем быстрее движутся прочь. Именно Хаббл осознал драматическое следствие этого открытия: на больших масштабах каждая галактика удаляется от любой другой. Вселенная расширяется

Соседняя с нами галактика, Туманность Андромеды, параметры которой были измерены Хабблом и Слайфером

Хронология открытий, сделанных Слайфером и Хабблом между 1910 и 1930 гг.

1912 - Слайфер получил спектры четырех туманностей и обнаружил в трех из них красное смещение, а в спектре Туманности Андромеды - голубое смещение. Он сделал вывод, что Туманность Андромеды приближается к нам, а остальные туманности от нас удаляются.

1912–1914 - Слайфер измерил спектры еще 12 туманностей. У всех, кроме одной, оказалось красное смещение.

1914 - Слайфер представил свои результаты Американскому астрономическому обществу. Хаббл при этом присутствовал.

1918 - Хаббл начал исследовать туманности.

1923 - Хаббл определил, что спиральные туманности (в том числе Туманность Андромеды) - это другие галактики.

1914–1925 - Слайфер и другие астрономы продолжали измерения доплеровских сдвигов. К 1925 г. было измерено 43 красных смещения и 2 голубых.

1929 - Хаббл и Мильтон Хьюмасон, продолжив измерения доплеровских сдвигов и обнаружив, что на больших масштабах каждая галактика выглядит удаляющейся от других, объявили, что Вселенная расширяется.

Эффект Доплера

Эффект Доплера, обнаруживающий связь между длиной волны и скоростью, мы наблюдаем едва ли не каждый день. Прислушайтесь к самолету, который пролетает над головой. Когда он приближается, звук двигателя кажется высоким, а когда удаляется - низким.

Высокий тон соответствует более коротким звуковым волнам (с малым расстоянием от одного гребня волны до следующего) и более высоким частотам (числу волн, приходящих в секунду).

Эффект Доплера вызван тем, что приближающийся самолет окажется ближе к вам, когда породит следующий гребень волны, а значит, расстояние между гребнями сократится. Аналогично, когда самолет удаляется, длины волн увеличиваются, а тональность воспринимаемого звука понижается.

Открытие расширения Вселенной стало одной из величайших интеллектуальных революций ХХ века. Оно оказалось совершенно неожиданным и полностью изменило ход дискуссии о происхождении Вселенной. Если галактики разлетаются, они должны были в прошлом находиться ближе друг к другу. Исходя из нынешнего темпа расширения мы можем заключить, что где-то между 10 и 15 миллиардами лет назад они находились очень близко друг от друга. Как описано в предыдущей главе, нам с Роджером Пенроузом удалось показать: из общей теории относительности Эйнштейна вытекает, что Вселенная и само время должны иметь начало в форме грандиозного взрыва. Оттого и темно ночное небо: ни одна звезда не могла светить дольше, чем десять - пятнадцать миллиардов лет - время, прошедшее с момента Большого взрыва.

Эффект Доплера также проявляется и для световых волн. Если галактика остается на постоянном расстоянии от Земли, характерные линии в ее спектре будут появляться на обычных стандартных позициях. Однако если она от нас удаляется, волны будут выглядеть более длинными или растянутыми, а характерные спектральные линии сместятся в красную сторону (справа). Если же галактика приближается к нам, тогда волны будут выглядеть сжатыми, а линии испытают голубое смещение.

Эдвин Хаббл у 100-дюймового телескопа обсерватории Маунт-Вилсон. 1930

Анализируя свет других галактик, Эдвин Хаббл открыл в 1920-х гг., что почти все галактики удаляются от нас со скоростью V, которая пропорциональна расстоянию R от Земли: V= Н х R . Эта важная закономерность, названная законом Хаббла, установила, что Вселенная расширяется, а постоянная Хаббла Н задает скорость ее расширения.

Рис. З.6. Закон Хаббла

На графике отражены последние данные наблюдений за красными смещениями галактик, подтверждающие, что закон Хаббла действует на огромных расстояниях от нас. Небольшой изгиб вверх на больших расстояниях говорит о том, что расширение ускоряется, возможно под влиянием энергии вакуума.

Мы привыкли, что одни события вызываются другими, более ранними событиями, которые, в свою очередь, обусловлены еще более ранними. Существует тянущаяся в прошлое цепь причинности. Но, предположим, что эта цепь имеет начало. Предположим, что было первое событие. Что вызвало его? Это не тот вопрос, которым хотело бы заниматься большинство ученых. Они стараются его избежать, либо заявляя, как русские, что у Вселенной не было начала, либо утверждая, что вопрос о ее происхождении лежит вне сферы науки и относится к метафизике и религии. Мое мнение состоит в том, что истинный ученый не должен принимать ни одну из этих позиций. Если действие законов природы приостанавливается у начала Вселенной, почему бы им не нарушаться также и в другие времена? Закон не закон, если он выполняется только иногда. Мы должны попытаться научно объяснить начало Вселенной. Возможно, эта задача окажется нам не по силам, но, по крайней мере, мы должны попробовать.

Хотя доказанные нами с Пенроузом теоремы продемонстрировали, что Вселенная должна иметь начало, они практически ничего не говорят о природе этого начала. Они указывают, что Вселенная началась с Большого взрыва, состояния, в котором вся она и все, что в ней есть, было сжато в одну точку бесконечной плотности. В этой точке общая теория относительности Эйнштейна становится неприменимой и ее нельзя использовать, чтобы предсказать, как именно началась Вселенная. Мы вынуждены признать, что происхождение Вселенной, по-видимому, лежит за пределами науки.

Горячий Большой Взрыв

Если верна общая теория относительности, Вселенная началась с бесконечно высокой температуры и плотности в сингулярности Большого взрыва. По мере расширения Вселенной температура и интенсивность излучения убывали. Примерно через одну сотую долю секунды после Большого взрыва температура составляла около 100 млрд градусов, а Вселенная была наполнена в основном фотонами, электронами, нейтрино (очень легкими частицами) и их античастицами, а также некоторым количеством протонов и нейтронов. В течение следующих трех минут Вселенная охладилась примерно до 1 млрд градусов, а протоны и нейтроны стали образовывать гелий, изотопы водорода и другие легкие элементы.

Сотни тысяч лет спустя, когда температура упала до нескольких тысяч градусов, электроны замедлились до такой степени, что легкие ядра смогли захватывать их, образуя атомы. Однако более тяжелые элементы, из которых мы состоим, такие как углерод и кислород, образовались лишь миллиарды лет спустя в результате горения гелия в ядрах звезд.

Эту картину плотной горячей Вселенной впервые описал физик Георгий Гамов в 1948 г. в статье, написанной совместно с Ральфом Альфером, где было сделано замечательное предсказание, что излучение той очень горячей эпохи и сегодня все еще должно быть вокруг нас. Предсказание ученых подтвердилось в 1965 г., когда физики Арно Пензиас и Роберт Вильсон зарегистрировали космическое фоновое микроволновое излучение .

Но это не тот вывод, который обрадовал бы ученых. Как отмечалось в главах 1 и 2, причина, по которой общая теория относительности не работает вблизи Большого взрыва, состоит в том, что она не включает принцип неопределенности, который вносит элемент случайности в квантовую теорию и о котором Эйнштейн высказался в том смысле, что Господь Бог не играет в кости. Однако все свидетельствует в пользу того, что Господь Бог завзятый игрок. Можно представлять себе Вселенную как огромное казино, в котором по каждому случаю бросают кости или крутят барабан рулетки (рис. 3.7).

Возможно, вы думаете, что держать казино - очень ненадежный бизнес, поскольку каждый бросок кости или спин рулетки несет риск потери денег. Но при большом числе ставок выигрыши и проигрыши усредняются и выходит результат, который можно предсказать (рис. 3.8). Владельцы казино устраивают так, чтобы отклонения усреднялись в их пользу. Вот почему они богаты. Единственный шанс выиграть для вас - поставить все свои деньги на небольшое число бросков костей или спин рулетки.

Если игрок много раз ставит на красное, то можно с высокой точностью предсказать его выигрыш или проигрыш, поскольку результаты отдельных розыгрышей усредняются. С другой стороны, невозможно предсказать исход любой отдельной ставки.

Точно так же и со Вселенной. Когда она столь велика, как сегодня, в ней совершается очень большое число бросков костей, результат усредняется и его можно предсказать. Вот почему классические законы работают для больших систем. Но когда Вселенная очень мала, как вблизи момента Большого взрыва, кости бросаются лишь небольшое число раз и принцип неопределенности становится очень важен.

Поскольку Вселенная постоянно бросает кости, чтобы выяснить, что случится дальше, у нее нет единственной истории, как можно было бы подумать. Напротив, Вселенная обладает всеми возможными историями - каждой с определенной вероятностью. Среди них должна быть и такая, в которой сборная Белиза взяла все золотые медали на Олимпийских играх, хотя, возможно, у нее и низкая вероятность. Мысль о том, что Вселенная имеет множество историй, может показаться научной фантастикой, но сегодня она принимается как научный факт. Ее сформулировал Ричард Фейнман, который был великим физиком и большим оригиналом.

Мы сейчас работаем над тем, чтобы совместить эйнштейновскую общую теорию относительности и фейнмановскую идею множественности историй в полной единой теории, которая описывает все, что случается во Вселенной. Единая теория позволит рассчитать, как будет развиваться Вселенная, если нам известно, как началась ее история. Но сама по себе единая теория не позволит узнать, с чего началась Вселенная, каким было ее исходное состояние. Для этого необходимы так называемые граничные условия, правила, которые говорят нам, что происходит на краях Вселенной, на краях пространства и времени.

Если бы граница Вселенной была просто точкой в пространстве-времени, мы могли бы раздвигать границы.

Если бы край Вселенной проходил через обычную точку в пространстве и времени, мы могли бы двинуться дальше и заявить, что вышли за пределы Вселенной. С другой стороны, если бы Вселенная обрывалась на краю, где пространство и время скомканы, а плотность бесконечна, было бы очень трудно задать осмысленные граничные условия.

И все же мы с моим коллегой Джимом Хартлом поняли, что есть третий вариант. Возможно, Вселенная не имеет границ в пространстве и времени. На первый взгляд кажется, будто это противоречит доказанной нами с Пенроузом теореме о том, что Вселенная должна иметь начало, то есть границу во времени. Однако, как объяснялось в главе 2, существует время другого типа, называемое мнимым, перпендикулярное обычному действительному времени, которое мы воспринимаем. История Вселенной в действительном времени определяет его историю в мнимом времени, и наоборот, но эти два типа истории могут очень сильно различаться. Например, в мнимом времени Вселенная может не иметь начала или конца. Мнимое время ведет себя почти как дополнительное направление в пространстве. В частности, различные истории Вселенной в мнимом времени можно представлять искривленными поверхностями, подобными сфере, плоскости или седлу, но в четырех измерениях, а не в двух (рис. 3.9).

Рис. 3.9 Истории вселенной

Если истории Вселенной уходят на бесконечность, как в случае седла, то встает проблема задания граничных условий на бесконечности. Если все истории Вселенной в мнимом времени представляют собой замкнутые по верхности, подобные поверхности Земли, тогда зада вать граничные условия вовсе не требуется.

Если, подобно седлу или плоскости, истории Вселенной уходят в бесконечность, то появляются проблемы с заданием граничных условий на бесконечности. Но если все истории Вселенной в мнимом времени представляют собой замкнутые поверхности, подобные поверхности Земли, то можно полностью уйти от задания граничных условий. Поверхность Земли не имеет границ или краев. Не было достоверных сообщений, что люди с них срывались.

Законы эволюции и начальные условия

Законы физики указывают, как начальное состояние меняется во времени. Например, если мы бросим в воздух камень, закон тяготения позволит с высокой точностью предсказать его последующее движение. Но мы не можем предсказать, где упадет камень, основываясь на одних только законах. Нам надо также знать скорость и направление его движения в момент, когда он отрывается от руки. Другими словами, мы должны знать начальные или, как еще говорят, граничные условия движения камня.

Космология пытается описать эволюцию целой Вселенной, используя законы физики. Поэтому мы должны задаться вопросом, каковы были начальные условия Вселенной, к которым мы должны применить эти законы. Начальное состояние может оказать весьма существенное влияние на фундаментальные свойства Вселенной, возможно даже на свойства элементарных частиц и взаимодействий, которые имеют решающее значение для развития биологической жизни.

Одно из предположений состоит в условии отсутствия границ, в том, что время и пространство конечны и образуют замкнутые поверхности, не имеющие границ. Предположение об отсутствии границ основывается на идее Фейнмана о множественности историй, но история частицы в фейнмановской сумме в данном случае заменяется полным пространством-временем, которое представляет историю всей Вселенной. Условие отсутствия границ - это, если быть точным, ограничение возможных историй Вселенной теми пространствами-временами, которые не имеют границ в мнимом времени. Другими словами, граничные условия для Вселенной состоят в том, что она не имеет граничных условий.

Космологи в настоящее время изучают вопрос, может ли начальная конфигурация, удовлетворяющая предположению об отсутствии границ, возможно совместно со слабым антропным принципом, привести к развитию Вселенной, подобной той, что мы наблюдаем.

Если истории Вселенной в мнимом времени действительно являются замкнутыми поверхностями, как предположили мы с Хартлом, это должно иметь важные последствия для философии и для картины нашего происхождения. Вселенная в таком случае полностью замкнута и самодостаточна; не требуется ничего за ее пределами, чтобы заводить часы и заставлять их идти. Все в мире должно определяться законами природы и приводиться в движение бросанием костей внутри Вселенной. Хотя это, возможно, звучит как предположение, но я в это верю, так же как и многие другие ученые.

Поверхность Земли не имеет границ или краев. Слухи о падении людей за край Земли несколько преувеличены.

Даже если граничное условие для Вселенной состоит в отсутствии граничных условий, у нее все равно будет не одна история. Согласно Фейнману у нее имеется множество историй. Для каждой возможной замкнутой поверхности должна быть своя история в мнимом времени, и каждая из них определяет историю в вещественном времени.

В результате мы получаем для Вселенной сверхразнообразие возможностей Что же выделяет конкретную Вселенную, в которой мы живем, из набора всех возможных Вселенных? С одной стороны, можно заметить, что многие возможные истории Вселенной не приводят к последовательному образованию галактик и звезд, что принципиально для нашего появления на свет. Хотя не исключено, что разумные существа могут развиться без галактик и звезд, это кажется маловероятным. Вот почему факт существования нас самих, способных задать вопрос «Почему Вселенная такова, какова она есть?», накладывает ограничения на историю мира, в котором мы живем. Этот факт указывает на то, что реализоваться должна одна из небольшого подмножества историй, в которых имеются галактики и звезды. Это иллюстрация так называемого антропного принципа. Он говорит, что Вселенная должна быть более или менее похожа на ту, что мы наблюдаем, поскольку, если бы она оказалась иной, не было бы никого, кто мог бы ее наблюдать (рис. 3.10).

Слева: вселенные (а), которые коллапсируют, становясь закрытыми. Справа: открытые вселенные (b), которые продолжают расширяться вечно.

Пограничные вселенные, балансирующие между падением на себя и дальнейшим расширением (c1), или с двойной инфляцией (с2) могут служить прибежищем разумной жизни. Наша Вселенная (d) пока продолжает расширяться.

Антропный принцип

Грубо говоря, антропный принцип утверждает, что мы видим Вселенную такой, как она есть, отчасти потому, что существуем. Этот взгляд диаметрально противоположен надеждам на создание объединенной теории, способной давать однозначные предсказания на основании исчерпывающего набора законов физики и согласно которой наш мир таков, каков он есть, поскольку не может быть другим. Существует много разных вариаций антропного принципа: начиная со слабых до тривиальности и кончая столь сильными, что они становятся абсурдными. Хотя большинство ученых неохотно признает лишь сильный антропный принцип, есть такие, кто готов оспаривать даже рассуждения, основанные на слабом.

Слабый антропный принцип сводится к объяснению того, в каких из множества эпох или частей Вселенной мы могли бы жить. Например, Большой взрыв должен был произойти порядка 10 млрд лет назад: Вселенная должна быть достаточно старой, чтобы некоторые звезды уже завершили свою эволюцию и наработали такие составляющие нас элементы, как кислород и углерод, но в то же время достаточно молодой, чтобы еще оставались звезды, способные поддержать своей энергией существование жизни.

В рамках предположения об отсутствии границ можно использовать фейнмановские правила для назначения чисел каждой истории Вселенной, чтобы определить, какими свойствами она будет обладать с наибольшей вероятностью. В этом контексте антропный принцип проявляется как требование того, чтобы истории содержали разумную жизнь. Конечно, нас меньше беспокоил бы антропный принцип, если бы можно было показать, что из множества различных начальных конфигураций Вселенная склонна развиваться так, что бы образовался мир, подобный тому, что мы наблюдаем. Это могло бы означать, что начальное состояние той части мира, в которой мы обитаем, не обязательно должно было выбираться с особой тщательностью .

Многим ученым не нравится антропный принцип, поскольку он кажется им нечетким и не обладающим большой предсказательной силой. Однако антропному принципу можно придать точную формулировку, и он кажется существенным при обсуждении происхождения Вселенной. М-теория, упомянутая в главе 2, допускает огромное разнообразие историй Вселенной. Большинство из этих историй не подходят для развития разумной жизни: пустые, слишком короткие, чрезмерно искривленные или неподходящие еще по каким-то параметрам. Причем согласно идее Ричарда Фейнмана о множественности историй эти необитаемые варианты могут иметь очень высокую вероятность.

Фейнмановские истории

Ричард Фейнман родился в Нью-Йорке, в Бруклине, в 1918 г. В 1942-м получил докторскую степень под руководством Джона Уилера в Принстонском университете. Вскоре после этого был привлечен к участию в Манхэттенском проекте. Фейнман прославился неугомонным характером и розыгрышами (в Лос-Ала-мосе он развлекался, вскрывая сейфы с секретной информацией), а также тем, что был выдающимся физиком: он стал ключевым разработчиком теории атомной бомбы. Самую суть его личности составляло неуемное любопытство к окружающему миру. Оно не только послужило двигателем его научного успеха, но и привело к удивительным достижениям, таким как расшифровка иероглифов майя.

После Второй мировой войны Фейнман предложил новый, очень эффективный взгляд на квантовую механику, за что в 1965 г. получил Нобелевскую премию. Он поставил под сомнение фундаментальное классическое представление о том, что каждая частица имеет только одну историю. Вместо этого он предположил, что частицы перемещаются из одного места в другое вдоль всех возможных путей в пространстве-времени. С каждой траекторией Фейнман связал два числа: одно для величины (амплитуды) волны, а другое для ее фазы (положение в цикле - гребень или впадина). Вероятность того, что частица попадет из точки А в точку В, определяется суммированием волн, связанных с каждым возможным путем из А в В.

В обыденном мире предметы перемещаются из исходной точки в конечную только по одному пути. Это тем не менее согласуется с фейнмановской идеей множественности историй (суммирования по историям), поскольку для больших объектов его правило назначения чисел каждому пути гарантирует, что при совместном учете вклады всех путей, кроме одного, нейтрализуются. Только один из бесконечного числа путей имеет значение, когда мы рассматриваем движение макроскопических объектов, и эта траектория в точности соответствует той, что следует из классических, ньютоновских законов движения.

Фактически не имеет значения, сколько может быть историй, в которых нет разумных существ. Нас интересует только то подмножество, в котором разумная жизнь развивается. Необязательно, чтобы она была чем-то похожа на людей. Маленькие зеленые человечки тоже годятся. Возможно, они даже больше подходят. За человеческой расой числится не так уж много разумных свершений.

В качестве примера силы антропного принципа рассмотрим число измерений пространства. Из практики хорошо известно, что мы живем в трехмерном пространстве. Это означает, что положение точки в пространстве можно задать тремя числами, например широтой, долготой и высотой над уровнем моря. Но почему пространство трехмерно? Почему не два, не четыре, не какое-то другое число измерений, как бывает в научной фантастике? В М-теории пространство имеет девять или десять измерений, но считается, что шесть или семь из них свернуты до очень малых размеров и только три измерения достаточно велики и являются приблизительно плоскими (рис. 3.11).

Почему мы не обитаем в сценарии, где свернуты восемь измерений и только два доступны восприятию? Двумерным животным было бы нелегко переваривать пищу. Если бы их пищеварительный тракт проходил насквозь, он разделял бы животное надвое и бедное создание распалось бы на части. Так что двух плоских измерений недостаточно для сколько-нибудь сложной и разумной жизни.

С другой стороны, если бы было четыре или больше «развернутых» измерений, гравитационное притяжение между двумя телами быстрее возрастало бы при сближении. Это означает, что вокруг звезд не было бы стабильных орбит для планет. Планеты либо падали бы на звезды (рис. 3.12, вверху), либо пропадали в темноте и холоде окружающего космоса (рис. 3.12, внизу).

Аналогичным образом были бы нестабильны орбиты электронов в атомах и привычное нам вещество не могло бы существовать. Так что, хотя концепция множественности историй позволяет существовать любому числу несвернутых измерений, только в сценариях с тремя такими измерениями могут быть разумные существа. Лишь в этих сценариях будет задан вопрос «Почему пространство имеет три измерения?».

Простейшая история Вселенной в мнимом времени - это сфера, подобная поверхности Земли, но с двумя дополнительными измерениями (рис. 3.13).

Простейшая история без границ в мнимом времени - это сфера. Она детерминирует историю в действительном времени, которая испытывает инфляционное расширение.

Она задает в действительном времени, которое является предметом нашего опыта, такую историю, в которой Вселенная одинакова во всех точках пространства и расширяется во времени. В этом отношении она похожа на Вселенную, в которой мы живем. Однако скорость расширения получается очень большой и продолжает увеличиваться. Такое ускоряющееся расширение называют инфляцией, поскольку оно напоминает, как в постоянно ускоряющемся темпе растут цены.

Инфляция цен обычно считается негативным явлением, но в случае Вселенной она очень выгодна. Сильная инфляция сглаживает любые комки материи, которые могли образоваться в ранней Вселенной. По мере расширения Вселенная заимствует энергию у гравитационного поля, чтобы создать больше вещества. Положительная энергия вещества в точности уравновешивается отрицательной гравитационной энергией, так что полный энергетический баланс равен нулю. Когда Вселенная удваивает свой размер, энергии вещества и гравитации тоже становится вдвое больше - но дважды ноль по-прежнему ноль. Если бы только банковский мир был таким простым (рис. 3.14)!

Рис. 3.14. Инфляционная вселенная

Инфляционная вселенная

В модели горячего Большого взрыва на ранних стадиях развития Вселенной времени было недостаточно для того, чтобы тепловая энергия перетекла из одного региона Вселенной в другой. Тем не менее мы наблюдаем, что во всех направлениях температура микроволнового фонового излучения одинакова. Это означает, что в начальном состоянии Вселенная должна была повсеместно иметь в точности одинаковую температуру.

В попытках найти модель, где множество различных начальных конфигураций могли бы эволюционировать в нечто похожее на современную Вселенную, было выдвинуто предположение, что ранняя Вселенная прошла через эпоху очень быстрого расширения. Это расширение называют инфляционным, подразумевая, что оно происходит во все возрастающем темпе, а не с замедлением, как расширение, наблюдаемое сегодня. Существование такой фазы инфляции способно объяснить, почему Вселенная выглядит одинаково во всех направлениях, поскольку в ранней Вселенной свет успевал пройти из одного района Вселенной в другой.

История в мнимом времени для Вселенной, которая вечно продолжает расширяться в инфляционном режиме, представляет собой идеальную сферу. Однако в нашей собственной Вселенной инфляционное расширение спустя долю секунды затормозилось и начали формироваться галактики. В мнимом времени это означает, что история нашей Вселенной представляет собой сферу, слегка сплюснутую у южного полюса.

В случае, когда история Вселенной в мнимом времени является идеальной сферой, в действительном времени ей соответствует история Вселенной, которая вечно продолжает раздуваться в инфляционном режиме. Пока она раздувается, вещество не может сгущаться и образовывать галактики, звезды и жизнь, не говоря уже о развитии разумных существ вроде нас. Поэтому хотя идеально сферические истории Вселенной в мнимом времени допускаются представлением о множественности историй, они не представляют большого интереса. Гораздо больше подходят нам истории в мнимом времени, которые слегка сплющены у южного полюса сферы (рис. 3.15).

В этом случае соответствующая история в реальном времени будет расширяться в ускоренном инфляционном режиме только вначале. А потом расширение начнет замедляться и смогут образоваться галактики. Чтобы могла появиться разумная жизнь, приплюснутость на южном полюсе должна быть очень слабой. Это будет означать, что первоначально Вселенная расширится до чудовищной величины. Рекордный уровень денежной инфляции имел место в Германии между двумя мировыми войнами, когда цены выросли в миллиарды раз, однако масштаб инфляции, которую должна была испытать Вселенная по крайней мере в миллиард миллиардов миллиардов раз больше (рис. 3.16).

Инфляция в Германии началась после окончания Первой мировой войны, и к февралю 1920 г. уровень цен поднялся в 5 раз по сравнению с 1918 г. После июля 1922 г. наступила фаза гиперинфляции. Всякое доверие к деньгам исчезло, и в течение 15 месяцев индекс цен рос все быстрее и быстрее, превосходя возможности печатных станков, которые не успевали печатать деньги с той же скоростью, с какой они обесценивались. К концу 1923 г. 300 бумажных фабрик работали на полную мощность, а в 150 типографиях 2 тысячи печатных станков круглосуточно производили банкноты.

Вследствие принципа неопределенности у Вселенной не должно быть только одной истории, содержащей разумную жизнь. Напротив, множество историй в мнимом времени образует целое семейство слегка деформированных сфер, каждой из которых соответствует история в действительном времени, с долгим, но не бесконечным инфляционным раздуванием Вселенной. Можно поинтересоваться: какая из таких допустимых историй наиболее вероятна? Оказывается, она не идеально ровная, а представляет собой поверхность с крошечными поднятиями и впадинами (рис. 3.17).

Рис. 3.17 Вероятные и невероятные истории

Гладкие истории наподобие а наиболее вероятны, но их существует лишь небольшое число.

Хотя любая слегка неправильной формы история вроде b или с сама по себе менее вероятна, число их столь велико, что, скорее всего, история Вселенной обнаружит небольшие отклонения от гладкости.

Правда, эта рябь на самой вероятной истории едва заметна. Отклонения от ровной поверхности составляют по порядку величины один к ста тысячам. Тем не менее, хотя они и крайне малы, мы можем наблюдать их как небольшие вариации в микроволновом излучении, которое приходит с разных направлений в космосе. Спутник Cosmic Background Explorer (СОВЕ), запущенный в 1989 г., построил карту неба в микроволновом диапазоне.

Карта всего неба, полученная инструментом ИМЯ на спутнике СОВЕ, говорит в пользу существования складок времени.

Цветом обозначены различия в температуре, причем весь диапазон от красного до голубого соответствует разбросу всего в одну десятитысячную долю градуса - этих различий между областями ранней Вселенной достаточно, чтобы избыточное тяготение в более плотных областях остановило их бесконечное расширение и вызвало сжатие под действием самогравитации, ведущее к образованию галактик и звезд. Так что карта СОВЕ, в принципе, является ни больше ни меньше как чертежом всех структур во Вселенной.

Каким окажется будущее для наиболее вероятных историй Вселенной, совместимых с появлением разумных существ? Тут видятся разные варианты в зависимости от количества вещества во Вселенной. Если его больше некоторого критического значения, гравитационное притяжение между галактиками замедлит и в конце концов остановит их разлет. Затем они начнут падать друг к другу и сойдутся в Большом сжатии, которое станет концом истории Вселенной в реальном времени (рис. 3.18).

Один из возможных сценариев конца Вселенной - Большое сжатие, гигантский катаклизм, когда вся материя будет всосана в гравитационный колодец.

Если плотность Вселенной ниже критического значения, гравитация слишком слаба, чтобы предотвратить вечное разлетание галактик. Все звезды прогорят, и Вселенная будет становиться все более пустой и холодной. Так что и тут все придет к концу, хотя и не столь драматичному. В любом случае Вселенная просуществует еще немало миллиардов лет (рис. 3.19).

Долгий холодный вой, в котором все замирает и гаснут последние звезды, исчерпывая свои запасы топлива.

Наряду с веществом Вселенная может содержать так называемую энергию вакуума, которая присутствует даже в пустом, казалось бы, пространстве. По знаменитому уравнению Эйнштейна Е = mc 2 энергия вакуума имеет массу. Это означает, что она оказывает гравитационное влияние на расширение Вселенной. Однако весьма примечательно, что воздействие энергии вакуума противоположно влиянию обычной материи. Вещество замедляет расширение и может в итоге остановить и обратить его вспять. Энергия вакуума, напротив, ускоряет расширение, как при инфляции. Фактически она действует в точности как космологическая постоянная, которую, как говорилось в главе 1, Эйнштейн добавил в свои первоначальные уравнения в 1917 г., когда понял, что они не допускают решения, соответствующего стационарной Вселенной. После открытия Хабблом расширения Вселенной основания для добавления в уравнения космологической постоянной исчезли, и Эйнштейн отбросил ее, как ошибку.

Однако она могла вовсе и не быть ошибкой. Как говорилось в главе 2, мы сейчас понимаем: квантовая теория указывает на то, что пространство-время заполнено квантовыми флуктуациями. В суперсимметричной теории бесконечные положительные и отрицательные энергии этих флуктуаций основного состояния взаимно нейтрализуются частицами с разным спином. Но мы не можем ожидать, что положительные и отрицательные энергии компенсируют друг друга столь точно, что не останется даже небольшого конечного количества энергии вакуума, поскольку Вселенная не находится в суперсимметричном состоянии. Единственная неожиданность состоит в том, что эта энергия столь близка к нолю, что ее не обнаружили раньше. Возможно, это другое проявление антропного принципа. История с большей энергией вакуума не привела бы к образованию галактик и не содержала бы существ, которые задали вопрос «Почему энергия вакуума имеет то значение, которое мы наблюдаем?».

Количество вещества и энергии вакуума во Вселенной можно пытаться определять различными наблюдательными методами, а результаты представить на диаграмме, где плотность вещества отложена по горизонтальной оси, а энергия вакуума - по вертикальной. Пунктирная линия показывает границы области, в которой способна развиваться разумная жизнь (рис. 3.20).

Объединяя наблюдения далеких сверхновых и космического микроволнового излучения сданными о распределении вещества во Вселенной, можно с очень высокой точностью определить энергию вакуума и плотность вещества во Вселенной.

Я бы и в ореховой скорлупе считал себя властелином необъятного пространства.

У. Шекспир. Гамлет. Акт 2, сиена 2

Наблюдения сверхновых, скопления галактик и микроволнового фона также задают свои области на этой диаграмме. К счастью, все три области имеют общее пересечение. Если плотности вещества и энергия вакуума попадают в это пересечение, это означает, что расширение Вселенной вновь начало ускоряться после долгого периода замедления. Похоже, инфляция может оказаться законом природы.

В этой главе мы показали, как поведение пространства Вселенной можно объяснить в терминах ее истории в мнимом времени, которая представляет собой крошечную, слегка сплющенную сферу. Что-то наподобие Гамлетовой скорлупы, только в этом орехе закодировано все, что случается в действительном времени. Так что Гамлет был совершенно прав. Мы можем быть заключены в ореховую скорлупку и все равно считать себя царями бесконечного космоса.

Из книги Заклятие Фавна автора Томилин Анатолий Николаевич

Из книги Живой кристалл автора Гегузин Яков Евсеевич

Глава 3 Великое открытиеС самого момента открытия Эрстедом влияния электрического тока на магнитную стрелку исследователей стала преследовать мысль: «А нельзя ли решить и обратную задачу: превратить магнетизм в электричество?» Во Франции над этой задачей ломали голову

Из книги Принц из страны облаков автора Гальфар Кристоф

Глава 4 «Русский свет»«Применение электрической энергии в России за последние годы значительно развилось, электротехническая же промышленность в ней до последнего времени находится в младенческом возрасте». Это строчки из толстой книги профессора Артура Вильке

Из книги Мир в ореховой скорлупке [илл. книга-журнал] автора Хокинг Стивен Уильям

Глава 1 На подступах к ГОЭЛРОПредприятия Сименса и Гальске, о которых шла речь в книге почтенного профессора Артура Вильке, были разбросаны по разным городам. Но самый большой Электротехнический завод в России (до 150 служащих) находился на Васильевском острове в

Из книги автора

Глава 2 Время свершенийСегодня много говорят о получении энергии с помощью Солнца, ветра, морских волн, об извлечении энергии из недр, за счет использования внутреннего тепла Земли, о приручении морских приливов и о выведении электростанций за пределы атмосферы. Но пока…

Из книги автора

Глава 18 Воздушный мотоцикл плыл совсем невысоко, в десяти метрах над облаком. Далеко внизу Том и Тристам различали берега вулканического острова.- Не стрелять! - повторил военный в плаще. - А тех - задержать!Солдаты высыпали на причал и начали обстреливать стрекозу

Из книги автора

Глава 1 Тристам и Том летели очень высоко, много выше, чем поднимаются облака естественного происхождения. С тех пор как они оставили позади льдистую пелену, с которой на Миртильвиль обрушились войска тирана, прошел не один час.Небо здесь было не таким, как над их городком:

Из книги автора

Глава 7 Прошло несколько часов. Тристам и Том лежали на жестких нарах в темной камере без окон, непрестанно ворочаясь с боку на бок. Лишь только напев флейты смолк, старик сразу задремал, что-то неразборчиво бормоча во сне.Тома снова начало знобить; Тристама же разбирал

Из книги автора

Глава 8 С прохладным и сыроватым рассветным воздухом смешивался густой дым, валивший из печных труб. На всех перекрестках в центре Белой Столицы были расставлены люди снегобоя. Они походили не столько на стражей порядка, сколько на оккупационные войска.Тристам и Том в

Из книги автора

Глава 9 Наступила ночь, за окнами стояла глубокая тишина. Тристам уснул. Рядом с ним, с раскрытой книгой на животе, спал, погруженный в грезы о будущем, Том.В глубине комнаты, растянувшись на матрасе, храпел один из полицейских. Второй сидел на лесенке, стоявшей теперь возле

Из книги автора

Глава 10 Тристам внимательно следил за тенью. Она двигалась прямо на военный патруль.«Там ему не проскочить!» - забеспокоился Тристам.Но человек с рюкзаком, наверное, и сам это знал: он вскарабкался по стене и, словно черная кошка, перепрыгивая с крыши на крышу, за считанные

Из книги автора

Глава 11 Наутро, как только мальчики проснулись, полицейские повели их вниз, в подземный ход. К счастью, в тесном тоннеле, по которому пришлось продвигаться гуськом, было чисто и сухо.- Долго еще? - спросил Тристам, когда они прошли метров десять.- Тс-с! - шепнул

Из книги автора

Стивен Хокинг Мир в ореховой скорлупке Предисловие Я не ожидал, что моя научно-популярная книга «Краткая история времени» окажется настолько успешной. В списке бестселлеров лондонской «Санди тайме» она продержалась более четырех лет - дольше любой другой книги, что

Стивен Хокинг

Мир в ореховой скорлупке

Предисловие

Я не ожидал, что моя научно-популярная книга «Краткая история времени» окажется настолько успешной. В списке бестселлеров лондонской «Санди тайме» она продержалась более четырех лет - дольше любой другой книги, что особенно удивительно для издания о науке, ведь они обычно расходятся не очень быстро. Потом люди стали спрашивать, когда ожидать продолжения. Я противился, мне не хотелось писать что-то вроде «Продолжения краткой истории» или «Немного более длинной истории времени». А еще я был занят исследованиями. Но постепенно стало ясно, что можно написать другую книгу, которая имеет шанс оказаться проще для понимания. «Краткая история времени» была построена по линейной схеме: в большинстве случаев каждая следующая глава логически связана с предшествующими. Одним читателям это нравилось, но другие, застряв на первых главах, так и не добирались до более интересных тем. Настоящая книга построена иначе - она скорее похожа на дерево: главы 1 и 2 образуют ствол, от которого отходят ветви остальных глав.

Эти «ответвления» в значительной степени независимы друг от друга, и, получив представление о «стволе», читатель может знакомиться с ними в произвольном порядке. Они связаны с областями, в которых я работал или о которых размышлял после публикации «Краткой истории времени». То есть отображают наиболее активно развивающиеся направления современных исследований. Внутри каждой главы я также попытался уйти от линейной структуры. Иллюстрации и подписи к ним указывают читателю альтернативный маршрут, как в «Иллюстрированной краткой истории времени», изданной в 1996 г. Врезки и замечания на полях позволяют затронуть некоторые темы глубже, чем это возможно в основном тексте.

В 1988 г., когда впервые вышла «Краткая история времени», впечатление было такое, что окончательная Теория Всего едва-едва замаячила на горизонте. Насколько с тех пор изменилась ситуация? Приблизились ли мы к нашей цели? Как вы узнаете из этой книги, прогресс был весьма значительным. Но путешествие еще продолжается, и конца ему пока не видно. Как говорится, лучше продолжать путь с надеждой, чем прибыть к цели. Наши поиски и открытия питают творческую активность во всех сферах, не только в науке. Если мы достигнем конца пути, человеческий дух иссохнет и умрет. Но я не думаю, что мы когда-либо остановимся: будем двигаться если не в глубину, то в сторону усложнения, всегда оставаясь в центре расширяющегося горизонта возможностей.

В работе над этой книгой у меня было много помощников. Особо я хотел бы отметить Томаса Хертога и Нила Ширера за их помощь с рисунками, подписями и врезками, Энн Харрис и Китти Фергюссон, которые редактировали рукопись (или, точнее, компьютерные файлы, поскольку все, что я пишу, появляется в электронной форме), Филиппа Данна из Book Laboratory и Moonrunner Design, который создал иллюстрации. Но кроме того, я хочу поблагодарить всех тех, кто дал мне возможность вести нормальную жизнь и заниматься научными исследованиями. Без них эта книга не была бы написана.

Краткая история относительности

О том, как Эйнштейн заложил основы

двух фундаментальных теорий ХХ века:

общей теории относительности и квантовой механики

Альберт Эйнштейн, создатель специальной и общей теорий относительности, родился в 1879 г. в немецком городе Ульме, позднее семья перебралась в Мюнхен, где у отца будущего ученого, Германа, и его дяди, Якоба, была небольшая и не слишком преуспевающая электротехническая фирма. Альберт не был вундеркиндом, но утверждения, будто он не успевал в школе, выглядят преувеличением. В 1894 г. бизнес его отца прогорел, и семья переехала в Милан. Родители решили оставить Альберта в Германии до окончания школы, но он не выносил немецкого авторитаризма и спустя несколько месяцев бросил школу, отправившись в Италию к своей семье. Позднее он завершил образование в Цюрихе, получив в 1900 г. диплом престижного Политехникума (E idgenössische T echnische H ochschule - Высшее техническое училище). Склонность к спорам и нелюбовь к начальству помешали Эйнштейну наладить отношения с профессорами ЕТН, так что никто из них не предложил ему места ассистента, с которого обычно начиналась академическая карьера. Только через два года молодому человеку наконец удалось устроиться на должность младшего клерка в Швейцарском патентном бюро в Берне. Именно в тот период, в 1905 г., он написал три статьи, которые не только сделали Эйнштейна одним из ведущих ученых мира, но и положили начало двум научным революциям - революциям, которые изменили наши представления о времени, пространстве и самой реальности.

К концу XIX века ученые считали, что вплотную подошли к исчерпывающему описанию Вселенной. По их представлениям, пространство было заполнено непрерывной средой - «эфиром». Лучи света и радиосигналы рассматривались как волны эфира, подобно тому как звук представляет собой волны плотности воздуха. Все, что требовалось для завершения теории, - это тщательно измерить упругие свойства эфира. Имея в виду эту задачу, Джефферсоновскую лабораторию в Гарвардском университете построили без единого железного гвоздя, чтобы избежать возможных помех в тончайших магнитных измерениях. Однако проектировщики забыли, что красно-коричневый кирпич, который использовался при возведении лаборатории, да и большинства других зданий Гарварда, содержит значительное количество железа. Здание служит по сей день, но в Гарварде так и не знают, какой вес смогут выдержать перекрытия библиотеки, не содержащие железных гвоздей.

К концу столетия концепция всепроникающего эфира начала сталкиваться с трудностями. Ожидалось, что свет должен распространяться по эфиру с фиксированной скоростью, но если вы сами движетесь сквозь эфир в том же направлении, что и свет, скорость света должна казаться меньше, а если вы движетесь в противоположном направлении, скорость света окажется больше (рис. 1.1).


Рис. 1.1 Теория неподвижного эфира

Если бы свет был волной в упругом веществе, называемом эфиром, его скорость казалась бы выше тому, кто движется на космическом корабле ему навстречу (а), и ниже - тому, кто движется в том же направлении, что и свет (б).


Однако в ряде экспериментов эти представления не удалось подтвердить. Наиболее точный и корректный из них осуществили в 1887 г. Альберт Майкельсон и Эдвард Морли в Школе прикладных наук Кейза, Кливленд, штат Огайо. Они сравнили скорость света в двух лучах, идущих под прямым углом друг к другу. Поскольку Земля вращается вокруг своей оси и обращается вокруг Солнца, скорость и направление движения аппаратуры сквозь эфир меняется (рис. 1.2). Но Майкельсон и Морли не обнаружили ни суточных, ни годичных различий в скорости света в двух лучах. Получалось, будто свет всегда движется относительно вас с одной и той же скоростью, независимо от того, как быстро и в каком направлении движетесь вы сами (рис. 1.3).


Рис. 1.2

Не было обнаружено никаких различий между скоростью света в направлении движения Земли по орбите и скоростью света в перпендикулярном направлении.


Основываясь на эксперименте Майкельсона - Морли, ирландский физик Джордж Фитцджералд и голландский физик Хендрик Лоренц предположили, что тела, движущиеся сквозь эфир, должны сжиматься, а часы - замедляться. Это сжатие и замедление таковы, что люди всегда будут получать при измерениях одинаковую скорость света независимо от того, как они движутся относительно эфира. (Фитцджералд и Лоренц по-прежнему считали эфир реальной субстанцией.) Однако в статье, написанной в июне 1905 г., Эйнштейн отметил, что если никто не может определить, движется он сквозь эфир или нет, то само понятие эфира становится лишним. Вместо этого он начал с постулата, что законы физики должны быть одинаковыми для всех свободно движущихся наблюдателей. В частности, все они, измеряя скорость света, должны получать одну и ту же величину, с какой бы скоростью ни двигались сами. Скорость света независима от их движений и одинакова во всех направлениях.


Рис. 1.3. Измерение скорости света

В интерферометре Майкельсона - Моря и свет источника расщеплялся на два луча полупрозрачным зеркалом. Лучи двигались перпендикулярно друг другу, а потом объединялись вновь, попадая на полупрозрачное зеркало. Разница в скорости лучей света, движущихся в двух направлениях, могла бы привести к тому, что гребни волн одного луча пришли бы одновременно с впадинами волн другого и взаимно погасили друг друга.

В 1988 году книга Стивена Хокинга «Краткая история времени», побившая рекорды продаж, познакомила читателей во всём мире с идеями этого замечательного физика-теоретика. И вот новое важное событие: Хокинг возвращается! Великолепно иллюстрированное продолжение — «Мир в ореховой скорлупке» — раскрывает суть научных открытий, которые были сделаны после выхода в свет его первой, широко признанной книги.

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.

Как и многие физики-теоретики, Хокинг жаждет отыскать Священный Грааль науки — Теорию Всего, которая лежит в основании космоса. Он позволяет нам прикоснуться к тайнам мироздания: от супергравитации до суперсимметрии, от квантовой теории до M-теории, от голографии до дуальностей. Вместе с ним мы пускаемся в увлекательное приключение, когда он рассказывает о попытках создать на основе общей теории относительности Эйнштейна и выдвинутой Ричардом Фейнманом идеи о множественности историй Полную объединенную теорию, которая опишет всё, что происходит во Вселенной.

Мы сопутствуем ему в необыкновенном путешествии через пространство-время, а великолепные цветные иллюстрации служат нам вехами в этом странствии по сюрреалистической Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, унося с собой свои секреты, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.

STEPHEN HAWKING
The Universe in a Nutshell
Перевел с английского А. Г. Сергеев
Издание подготовлено при поддержке фонда Дмитрия Зимина «Династия»
СПб: Амфора. ТИД Амфора, 2007. — 218 с.

Глава 5. Защищая прошлое

О том, возможны ли путешествия во времени и способна ли высокоразвитая цивилизация, вернувшись в прошлое, изменить его

Поскольку Стивен Хокинг (который проиграл предыдущее пари по данному вопросу, выставив требования в недостаточно общем виде) по-прежнему твердо уверен, что голые сингулярности прокляты и должны быть запрещены законами классической физики, и поскольку Джон Прескилл и Кип Торн (выигравшие предыдущее пари) по-прежнему считают, что голые сингулярности как квантовые гравитационные объекты могут существовать, не будучи укрыты горизонтом, в наблюдаемой нами Вселенной, Хокинг предложил, а Прескилл/Торн приняли следующее пари:

Коль скоро любая форма классического вещества или поля, неспособная стать сингулярной в плоском пространстве-времени, подчиняется классическим уравнениям общей теории относительности Эйнштейна, динамическая эволюция из любых начальных условий (то есть от любого открытого набора начальных данных) никогда не сможет породить голую сингулярность (неполную нулевую геодезическую из I + с конечной точкой в прошлом).

Проигравший вознаграждает победителя одеждой, дабы тот мог прикрыть свою наготу. На одежде должно быть вышито соответствующее случаю сообщение.

Мой друг и коллега Кип Торн, с которым у меня было заключено немало пари (еще действующих), не из тех, кто следует общепринятой линии в физике только оттого, что все так поступают. Поэтому он стал первым серьезным ученым, кто осмелился обсуждать путешествия во времени как практическую возможность.

Открыто говорить о путешествиях во времени - весьма щекотливое дело. Вы рискуете сбиться либо на громкие призывы вложить бюджетные деньги в какую-нибудь нелепость, либо на требование засекретить исследования в военных целях. В самом деле, как мы можем защититься от кого-то имеющего в своем распоряжении машину времени? Ведь он способен изменить саму историю и править миром. Лишь немногие из нас достаточно безрассудны, чтобы работать над вопросом, который в среде физиков слывет настолько неполиткорректным. Мы маскируем этот факт при помощи технических терминов, в которых зашифрованы путешествия во времени.

Основа всех современных дискуссий о путешествиях во времени - общая теория относительности Эйнштейна. Как следует из предыдущих глав, уравнения Эйнштейна делают пространство и время динамичными, описывая, как те искривляются и искажаются под действием материи и энергии во Вселенной. В общей теории относительности чье угодно персональное время, измеряемое по наручным часам, всегда будет увеличиваться, так же как и в теории Ньютона или в плоском пространстве-времени специальной теории относительности. Но быть может, пространство-время окажется настолько закрученным, что вам удастся улететь на звездолете и вернуться раньше своего отправления (рис. 5.1).

Например, это может случиться, если существуют кротовые норы - упоминавшиеся в главе 4 трубки пространства-времени, которые соединяют различные его области. Идея состоит в том, чтобы направить звездолет в одно устье кротовой норы и появиться из другого в совершенно иных месте и времени (рис. 5.2).

Кротовые норы, если они существуют, могли бы решить проблему предельной скорости в космосе: согласно теории относительности, чтобы пересечь Галактику, требуются десятки тысяч лет. Но через кротовую нору можно слетать на другой край Галактики и вернуться обратно за время ужина. Между тем легко показать, что, если кротовые норы существуют, ими можно воспользоваться для того, чтобы оказаться в прошлом.

Так что стоит подумать, что получится, если вы сумеете, например, взорвать свою ракету на стартовой площадке, чтобы не допустить собственного же полета. Это вариация известного парадокса: что случится, если вы отправитесь в прошлое и убьете собственного дедушку, прежде чем он успеет зачать вашего отца (рис. 5.3)?

Конечно, парадокс тут получается только в том случае, если считать, что, оказавшись в прошлом, вы сможете делать что хотите. Эта книга не место для философских дискуссий о свободе воли. Вместо этого мы сконцентрируемся на том, позволяют ли законы физики так скрутить пространство-время, чтобы макроскопическое тело вроде космического корабля могло вернуться в свое прошлое. Согласно теории Эйнштейна космический корабль всегда движется со скоростью, которая меньше локальной скорости света в пространстве-времени, и следует вдоль так называемой времениподобной мировой линии . Это позволяет переформулировать вопрос в технических терминах: могут ли в пространстве-времени существовать замкнутые времениподобные кривые, то есть такие, которые снова и снова возвращаются к своей начальной точке? Я буду называть подобные траектории «временны ми петлями».

Искать ответ на поставленный вопрос можно на трех уровнях. Первый - это уровень общей теории относительности Эйнштейна, которая подразумевает, что у Вселенной есть четко заданная история без всякой неопределенности. Для этой классической теории мы имеем законченную картину. Однако, как мы видели, такая теория не может быть абсолютно точной, поскольку согласно наблюдениям материя подвержена влиянию неопределенности и квантовых флуктуаций.

Поэтому можно задать вопрос о путешествиях во времени на втором уровне - для случая полуклассических теорий. Теперь мы рассматриваем поведение материи согласно квантовой теории с неопределенностями и квантовыми флуктуациями, но пространство-время считаем хорошо определенным и классическим. Эта картина не такая целостная, но она, по крайней мере, дает некоторое представление о том, как следует действовать.

Наконец, есть подход с позиций полной квантовой теории гравитации, чем бы она в итоге ни оказалась. В этой теории, где не только материя, но также сами время и пространство подвержены неопределенности ифлуктуируют, не вполне ясно даже, как поставить вопрос о возможности путешествий во времени. Пожалуй, лучшее, что можно сделать, - это попросить людей в областях, где пространство-время почти классическое и свободно от неопределенностей, интерпретировать свои измерения. Будет ли им казаться, что в областях с сильной гравитацией и большими квантовыми флуктуациями случаются путешествия во времени?

Начнем с классической теории: плоское пространство-время специальной теории относительности (без гравитации) не позволяет путешествовать во времени, невозможно это и в тех искривленных вариантах пространства-времени, которые изучались на первых порах. Эйнштейн был буквально шокирован, когда в 1949 г. Курт Гёдель, тот самый, что доказал знаменитую теорему Гёделя, открыл что пространство-время во вселенной, целиком заполненной вращающейся материей, имеет временну ю петлю в каждой точке (рис. 5.4).

Решение Гёделя требовало введения космологической постоянной, которой может в реальности и не быть, но позднее были найдены подобные решения без космологической постоянной. Особенно интересен случай, когда две космические струны движутся друг мимо друга на высокой скорости.

Космические струны не следует путать с элементарными объектами теории струн, с которыми они совершенно не связаны. Подобные объекты имеют протяженность, но при этом обладают крохотным поперечным сечением. Их существование предсказывается в некоторых теориях элементарных частиц. Пространство-время за пределами одиночной космической струны плоское. Однако это плоское пространство-время имеет клинообразный вырез, вершина которого лежит как раз на струне. Оно похоже на конус: возьмите большой круг из бумаги и вырежьте из него сектор, подобный куску пирога, вершина которого расположена в центре круга. Удалив вырезанный кусок, склейте края разреза у оставшейся части - получится конус. Он изображает пространство-время, в котором существует космическая струна (рис. 5.5).

Заметьте, поскольку поверхность конуса - это всё тот же плоский лист бумаги, с которого мы начали (за вычетом удаленного сектора), его можно по-прежнему считать плоским, за исключением вершины. Наличие кривизны в вершине можно выявить по тому факту, что описанные вокруг нее окружности имеют меньшую длину, чем окружности, удаленные на такое же расстояние от центра на исходном круглом листе бумаги. Иными словами, окружность вокруг вершины короче, чем должна быть окружность того же радиуса в плоском пространстве из-за отсутствующего сектора (рис. 5.6).

Подобным же образом удаленный из плоского пространства-времени сектор укорачивает окружности вокруг космической струны, но не влияет на время или расстояние вдоль нее. Это означает, что пространство-время вокруг отдельной космической струны не содержит временны х петель, и, следовательно, путешествия в прошлое невозможны. Однако если есть вторая космическая струна, которая движется относительно первой, ее направление времени будет комбинацией времени и пространственных изменений первой. Это значит, что сектор, который вырезается второй струной, будет сокращать как расстояния в пространстве, так и интервалы времени для наблюдателя, который движется вместе с первой струной (рис. 5.7). Если струны движутся друг относительно друга с околосветовой скоростью, сокращение времени при обходе обеих струн может быть столь значительным, что вы вернетесь обратно раньше, чем стартуете. Другими словами, здесь имеются временны е петли, по которым можно путешествовать в прошлое.

Космические струны содержат материю, обладающую положительной плотностью энергии, что совместимо с известной на сегодня физикой. Однако скручивание пространства, которое порождает временны е петли, тянется до самой бесконечности в пространстве и до бесконечного прошлого во времени. Так что подобные структуры пространства-времени изначально, по построению допускают возможность путешествий во времени. Нет оснований считать, что наша собственная Вселенная скроена по такому извращенному фасону, у нас нет надежных свидетельств появления гостей из будущего. (Я не принимаю в расчет конспирологические теории о том, что НЛО прилетают из будущего, а правительство знает об этом, но скрывает правду. Обычно оно скрывает не столь замечательные вещи.) Поэтому я буду предполагать, что временны х петель не было в далеком прошлом, а если точнее, то в прошлом относительно некоторой поверхности в пространстве-времени, которую я обозначу S . Вопрос: может ли высокоразвитая цивилизация построить машину времени? То есть может ли она изменить пространство-время в будущем относительно S (выше поверхности S на диаграмме) таким образом, чтобы петли появились только в области конечного размера? Я говорю о конечной области потому, что как бы ни была развита цивилизация, она, по-видимому, способна контролировать только ограниченную часть Вселенной. В науке правильно сформулировать задачу часто значит найти ключ к ее решению, и рассматриваемый нами случай - хорошая тому иллюстрация. За определением финитной машины времени я обращусь к одной из моих старых работ. Путешествие во времени возможно в некоторой области пространства-времени, где имеются временны е петли, то есть траектории с досветовой скоростью движения, которые тем не менее умудряются вернуться в исходное место и время вследствие искривления пространства-времени. Поскольку я предположил, что в далеком прошлом временны х петель не было, должен существовать, как я его называю, «горизонт путешествий во времени» - граница, которая отделяет область, содержащую временны е петли, от области, где их нет (рис. 5.8).

Горизонт путешествий во времени весьма похож на горизонт черной дыры. В то время как последний образуется световыми лучами, которым не хватает самой малости, чтобы покинуть черную дыру, горизонт путешествий во времени задается лучами, находящимися на грани встречи с самими собой. Далее я буду считать критерием машины времени наличие так называемого финитно порожденного горизонта, то есть сформированного световыми лучами, которые испущены из области ограниченного размера. Иными словами, они не должны приходить из бесконечности или сингулярности, а только из конечной области, содержащей временну ю петлю, такой области, которую, как мы предполагаем, будет способна создать наша высокоразвитая цивилизация.

С принятием такого критерия машины времени появляется замечательная возможность использовать для изучения сингулярностей и черных дыр методы, которые разработали мы с Роджером Пенроузом. Даже не используя уравнения Эйнштейна, я могу показать, что в общем случае финитно порожденный горизонт будет содержать световые лучи, которые встречаются сами с собой, продолжая снова и снова возвращаться в одну и ту же точку. Делая круг, свет каждый раз будет испытывать всё более и более сильное голубое смещение, а изображения будут становиться всё синее и синее. Горбы волн в пучке начнут всё больше сближаться друг с другом, а интервалы, через которые возвращается свет, сделаются всё короче и короче. Фактически у частицы света будет конечная история, если рассматривать ее в собственном времени, даже несмотря на то, что она нарезает круги в конечной области и не попадает в сингулярную точку кривизны.

То, что частица света исчерпает свою историю за конечное время, может показаться несущественным. Но я могу также доказать возможность существования мировых линий, скорость движения по которым меньше световой, а продолжительность - конечна. Это могут быть истории наблюдателей, которые пойманы в конечную область перед горизонтом и двигаются круг за кругом всё быстрее и быстрее, пока не достигнут за конечное время скорости света. Так что, если красивая пришелица из летающей тарелки приглашает вас в свою машину времени, будьте осторожны. Вы можете попасть в ловушку повторяющихся историй с конечной общей продолжительностью (рис. 5.9).

Эти результаты не зависят от уравнения Эйнштейна, а только от того, каким образом пространство-время скручено для получения временно й петли в конечной области. Но все-таки что за материал могла бы использовать высокоразвитая цивилизация, чтобы построить машину времени конечных размеров? Может ли он везде иметь положительную плотность энергии, как в случае с описанным выше пространством-временем космической струны? Космическая струна не удовлетворяет моему требованию, чтобы временны е петли появлялись только в конечной области. Но можно было бы подумать, будто это обусловлено лишь тем, что струны имеют бесконечную длину. Кто-то, возможно, надеется построить конечную машину времени, используя конечные петли из космических струн, имеющих всюду положительную плотность энергии. Жаль разочаровывать людей, которые, подобно Кипу, хотят вернуться в прошлое, но это невозможно сделать, сохраняя везде положительную плотность энергии. Я могу доказать, что для постройки конечной машины времени вам понадобится отрицательная энергия.

В классической теории плотность энергии всегда положительна, так что существование конечной машины времени на этом уровне исключается. Но ситуация меняется в полуклассической теории, где поведение материи рассматривается в соответствии с квантовой теорией, а пространство-время считается хорошо определенным, классическим. Как мы видели, принцип неопределенности в квантовой теории означает, что поля всегда флуктуируют вверх и вниз, даже в пустом, казалось бы, пространстве, и обладают бесконечной плотностью энергии. Ведь только вычтя бесконечную величину, мы получаем конечную плотность энергии, которую наблюдаем во Вселенной. Это вычитание может дать и отрицательную плотность энергии, по крайней мере локально. Даже в плоском пространстве можно найти квантовые состояния, в которых плотность энергии локально отрицательна, хотя общая энергия положительна. Интересно, действительно ли эти отрицательные значения заставляют пространство-время искривляться так, чтобы возникла финитная машина времени? Похоже, что они должны к этому приводить. Как явствует из главы 4, квантовые флуктуации означают, что даже пустое на первый взгляд пространство заполнено парами виртуальных частиц, которые вместе появляются, разлетаются, а затем сходятся снова и аннигилируют друг с другом (рис. 5.10). Один из элементов виртуальной пары будет иметь положительную энергию, а другой - отрицательную. При наличии черной дыры частица с отрицательной энергией может упасть на нее, а частица с положительной энергией - улететь на бесконечность, где она будет выглядеть как излучение, уносящее положительную энергию из черной дыры. А частицы с отрицательной энергией, падая в черную дыру, приведут к уменьшению ее массы и медленному испарению, сопровождаемому уменьшением размеров горизонта (рис. 5.11).

Обычная материя с положительной плотностью энергии порождает притягивающую гравитационную силу и искривляет пространство-время так, что лучи поворачивают друг к другу, в точности как шар на резиновом листе из главы 2 всегда заворачивает маленький шарик к себе и никогда - прочь.

Отсюда вытекает, что площадь горизонта черной дыры со временем только увеличивается и никогда не сокращается. Чтобы горизонт черной дыры уменьшился, плотность энергии на горизонте должна быть отрицательной, а пространство-время должно заставлять лучи света расходиться. Я впервые понял это как-то раз, ложась спать, вскоре после рождения моей дочери. Не скажу точно, как давно это было, но сейчас у меня уже есть внук.

Испарение черных дыр показывает, что на квантовом уровне плотность энергии может иногда быть отрицательной и искривлять пространство-время в направлении, которое было бы нужно для построения машины времени. Так что можно представить цивилизацию, стоящую на такой высокой ступени развития, что она способна добиться достаточно большой отрицательной плотности энергии, чтобы получить машину времени, которая годилась бы для макроскопических объектов вроде космических кораблей. Однако есть существенное различие между горизонтом черной дыры, формируемым лучами света, которые просто продолжают двигаться, и горизонтом в машине времени, который содержит замкнутые лучи света, продолжающие наворачивать круги. Виртуальная частица, раз за разом движущаяся по такому замкнутом пути, приносила бы в одну и ту же точку свою энергию основного состояния. Поэтому следует ожидать, что на горизонте, то есть на границе машины времени - области, в которой можно путешествовать в прошлое, - плотность энергии окажется бесконечной. Это подтверждается точными вычислениями в ряде частных случаев, которые достаточно просты, чтобы можно было получить точное решение. Выходит, что человек или космический зонд, который попробует пересечь горизонт и попасть в машину времени, будет полностью уничтожен завесой излучения (рис. 5.12). Так что будущее путешествий во времени выглядит довольно мрачным (или следует сказать «ослепительно ярким»?).

Плотность энергии вещества зависит от состояния, в котором оно находится, так что, возможно, высокоразвитая цивилизация сумеет сделать плотность энергии на границе машины времени конечной, «замораживая» или удаляя виртуальные частицы, которые круг за кругом движутся по замкнутой петле. Нет, однако, уверенности, что такая машина времени будет устойчивой: малейшее возмущение, например кто-то пересекающий горизонт, чтобы войти в машину времени, может запустить циркуляцию виртуальных частиц и вызвать испепеляющую молнию. Этот вопрос физикам следует свободно обсуждать, не боясь презрительных насмешек. Даже если окажется, что путешествия во времени невозможны, мы поймем, почему они невозможны, а это важно.

Чтобы со всей определенностью ответить на обсуждаемый вопрос мы должны рассмотреть квантовые флуктуации не только материальных полей, но и самого пространства-времени. Можно ожидать, что это вызовет некоторую размытость в путях световых лучей и в целом в принципе хронологического упорядочивания. В действительности можно рассматривать излучение черной дыры как утечку, вызванную квантовыми флуктуациями пространства-времени, которые свидетельствуют, что горизонт определен не вполне точно. Поскольку у нас пока нет готовой теории квантовой гравитации, трудно сказать, каков должен быть эффект флуктуаций пространства-времени. Но несмотря на это, мы можем надеяться получить некоторые подсказки из фейнмановского суммирования историй, описанного в главе 3.

Каждая история будет искривленным пространством-временем с материальными полями в нем. Поскольку мы собираемся суммировать по всем возможным историям, а не только по тем, которые удовлетворяют некоторым уравнениям, сумма должна включать и такие пространства-времена, которые достаточно закручены для путешествий в прошлое (рис. 5.13). Тогда возникает вопрос: почему такие путешествия не происходят повсеместно? Ответ состоит в том, что перемещения во времени на самом деле имеют место в микроскопическом масштабе, но мы их не замечаем. Если применить фейнмановскую идею суммирования по историям к одной частице, то надо включить истории, в которых она движется быстрее света и даже назад во времени. В частности, будут и такие истории, в которых частица движется круг за кругом по замкнутой петле во времени и пространстве. Как в фильме «День сурка», где репортер проживает одни и те же сутки снова и снова (рис. 5. 14).

Частицы с такими замкнутыми в петлю историями нельзя наблюдать на ускорителях. Однако их побочные проявления можно измерить, наблюдая ряд экспериментальных эффектов. Один из них - это незначительный сдвиг в излучении, испускаемом атомами водорода, который вызван электронами, движущимися по замкнутым петлям. Другой - небольшая сила, действующая между параллельными металлическими пластинами и вызванная тем, что между ними помещается чуть меньше замкнутых петель, чем во внешних областях, - это другая эквивалентная трактовка эффекта Казимира. Таким образом, существование замкнутых в петлю историй подтверждается экспериментом (рис. 5.15).

Можно поспорить о том, имеют ли подобные закольцованные истории частиц какое-то отношение к искривлению пространства-времени, поскольку они возникают даже на таком неизменном фоне, как плоское пространство. Но в последние годы мы обнаружили, что физические явления часто имеют в равной мере корректные дуальные описания. Можно с равным основанием говорить о том, что частицы движутся по замкнутым петлям на неизменном фоне или что они остаются неподвижными, а вокруг них флуктуирует пространство-время. Это сводится к вопросу: хотите ли вы сначала суммировать по траекториям частиц, а потом по искривленным пространствам-временам или наоборот?

Таким образом, квантовая теория, по-видимому, позволяет перемещаться во времени в микроскопическом масштабе. Но для научно-фантастических целей вроде полета в прошлое и убийства своего дедушки от этого мало пользы. Поэтому остается вопрос: может ли вероятность при суммировании по историям достичь максимума на пространствах-временах с макроскопическими петлями времени?

Исследовать этот вопрос можно, рассматривая суммы по историям материальных полей на последовательности фоновых пространств-времен, которые становятся всё ближе и ближе к тому, чтобы допускать петли времени. Было бы естественно ожидать, что в момент, когда временна я петля впервые появляется, должно случиться нечто знаменательное. Так оно и произошло в простом примере, который я изучал с моим студентом Майклом Кассиди.

Фоновые пространства-времена, которые мы изучали, были тесно связаны с так называемой вселенной Эйнштейна, пространством-временем, которое Эйнштейн предложил, когда еще верил, что Вселенная является статической и неизменной во времени, не расширяющейся и не сжимающейся (см. главу 1). Во вселенной Эйнштейна время идет от бесконечного прошлого к бесконечному будущему. А вот пространственные измерения конечны и замкнуты сами на себя, подобно поверхности Земли, но только с числом измерений на одно больше. Такое пространство-время можно изобразить как цилиндр, продольная ось которого будет временем, а сечение - пространством с тремя измерениями (рис. 5.16).

Так как вселенная Эйнштейна не расширяется, она не соответствует той Вселенной, в которой мы живем. Тем не менее это удобная основа для обсуждения путешествий во времени, поскольку она достаточно проста, чтобы можно было выполнить суммирование по историям. Забудем ненадолго о путешествиях во времени и рассмотрим вещество во вселенной Эйнштейна, которая вращается вокруг некоторой оси. Если вы окажетесь на этой оси, то будете оставаться в одной и той же точке пространства, как будто стоите в центре детской карусели. Но, расположившись в стороне от оси, вы будете двигаться в пространстве вокруг нее. Чем дальше от оси, тем быстрее будет ваше движение (рис. 5.17). Так что, если вселенная бесконечна в пространстве, достаточно далекие от оси точки будут вращаться со сверхсветовой скоростью. Но, поскольку вселенная Эйнштейна конечна в пространственных измерениях, существует критическая скорость вращения, при которой ни одна ее часть еще не будет вращаться быстрее света.

Теперь рассмотрим сумму по историям частицы во вращающейся вселенной Эйнштейна. Когда вращение медленное, имеется много путей, по которым может двигаться частица при данном количестве энергии. Поэтому суммирование по всем историям частицы на таком фоне дает большую амплитуду. Это означает, что вероятность такого фона при суммировании по всем историям искривленного пространства-времени будет высока, то есть он относится к числу более вероятных историй. Однако по мере того как скорость вращения вселенной Эйнштейна приближается к критической отметке, а скорость движения ее внешних областей стремится к скорости света, остается единственный путь, который допусти м для классических частиц на краю вселенной, а именно движение со скоростью света. Это означает, что сумма по историям частицы будет мала, а значит, вероятности таких пространственно-временны х фонов в сумме по всем историям искривленного пространства-времени окажутся низкими. То есть они будут наименее вероятными.

Но какое отношение к путешествиям во времени и временны м петлям имеют вращающиеся вселенные Эйнштейна? Ответ состоит в том, что они математически эквивалентны другим фонам, в которых возможны петли времени. Эти другие фоны - вселенные, которые расширяются в двух пространственных направлениях. Такие вселенные не расширяются в третьем пространственном направлении, которое является периодическим. То есть если вы пройдете определенное расстояние в этом направлении, то окажетесь там, откуда стартовали. Однако с каждым кругом в этом направлении ваша скорость в первом и втором направлениях будет возрастать (рис. 5.18).

Если разгон невелик, то временны х петель не существует. Рассмотрим, однако, последовательность фонов с всё бо льшим приращением скорости. Петли времени появляются при некоторой критической величине разгона. Неудивительно, что этот критический разгон соответствует критической скорости вращения вселенных Эйнштейна. Поскольку вычисление суммы по историям на обоих этих фонах математически эквивалентно, можно заключить, что вероятность таких фонов стремится к нулю по мере приближения к искривлению, необходимому для получения петель времени. Другими словами, вероятность искривления, достаточного для машины времени, равна нулю. Это подтверждает то, что я называю гипотезой защиты хронологии: законы физики устроены так, что не допускают перемещения во времени макроскопических объектов.

Хотя временны е петли разрешены при суммировании по историям, их вероятности получаются чрезвычайно низкими. Основываясь на упоминавшихся выше соотношениях дуальности, я оценил вероятность того, что Кип Торн сможет отправиться в прошлое и убить своего дедушку: она оказалась меньше чем единица к десяти в степени триллион триллионов триллионов триллионов триллионов.

Это просто удивительно низкая вероятность, но если вы внимательно посмотрите на фотографию Кипа, то заметите легкую дымку по краям. Она соответствует исчезающе малой вероятности того, что какой-то проходимец из будущего отправится в прошлое и убьет его дедушку, и потому Кипа на самом деле здесь нет.

Будучи азартными людьми, мы с Кипом хотели бы заключить пари по поводу аномалии вроде этой. Проблема, однако, в том, что мы не можем этого сделать, поскольку сейчас придерживаемся единого мнения. А с кем-то другим я пари заключать не стану. Вдруг он окажется пришельцем из будущего, знающим, что путешествия во времени возможны?

Вам показалось, что эта глава написана по указке правительства, чтобы скрыть реальность путешествий во времени? Возможно, вы правы.

Мировая линия - это путь в четырехмерном пространстве-времени. Времениподобные мировые линии совмещают перемещение в пространстве с естественным движением вперед во времени. Только по таким линиям могут следовать материальные объекты.

Финитный - имеющий конечные размеры.

О, вот уже и Стивена Хокинга выложили на Фантлабе. Очень неожиданно, но раз он здесь, то промолчать я не могу.

Для начала немного о самом авторе: Стивен Хокинг – ярчайший пример твёрдости человеческого духа. Оказаться парализованным, лишённым возможности говорить – что может быть страшнее этой участи? Но его дух и разум Титана победили физическую немощь. И ещё как победили! Хокинг – один из умнейших людей, что живут сейчас на нашей планете. Если кому требуется доказательства примата духа над телом, то вот вам это доказательство. Те, кто жалуются на свои мелкие проблемы или болячки – вот вам пример НАСТОЯЩЕЙ проблемы и НАСТОЯЩЕЙ физической немощи. Собственно сам Стивен Хокинг и есть Фантастика. Человек-подвижник, человек-мученик, человек-символ. :pray:

О книге: читал (вернее до сих пор читаю, ибо дело идёт очень медленно) только одну книгу. Вещь абсолютно шикарная! И как любая шикарная вещь – достаточно редкая. Тираж книги – 7 000 экземпляров, так что встретить её на прилавках книжных магазинов небольших городов вряд ли возможно. Сам лично заказывал эту книгу через Интернет, на сайте www.urss.ru (модераторов очень прошу не удалять ссылку, поскольку данный магазин распространяет исключительно научную или научно-образовательную литературу, которую, зачастую, больше нигде не найдёшь). Прекрасное издание в суперобложке и твёрдом переплёте на шикарной мелованной бумаге (боже, как это отличается от уже ставшей привычной дешёвой и сероватой бумаги!). Великолепная полиграфия, текст нигде не смазывается. Отличные цветные рисунки, которые идеально дополняют довольно таки сложный текст, наглядно показывая ход авторской мысли. В общем, за эту книгу не жалко отдать свои кровные шестьсот рублей + оплатить доставку по почте.

Что касается самого текста, то он достаточно сложен. Но сложен он не потому, что автор плохо излагает свои мысли или из-за того, что он злоупотребляет терминологией или страшными формулами, а потому, что он пытается объяснить сложнейшие и интереснейшие проблемы, над решением которых бьётся современная физика. Со своей стороны (т.е. со стороны учёного-популяризатора) Хокинг сделал всё что мог, но и читатель должен приложить не мало усилий, что бы хотя бы в общих чертах понять, о чём говорит автор.

В этой книге, в отличие, например, от другого бестселлера научно-популярной литературы Брайана Грина «Элегантная вселенная» нет глав, позволяющих освежить память о физических законах макро- и микромира. Если Брайан Грин потратил полкниги что бы подготовить читателя к теории Суперструн и одиннадцатимерного измерения в котором они существуют, то Стивен Хокинг предпочёл брать быка за рога и со второй главы начал рассказывать о форме Времени, попутно напоминая об азах своей науки. Так что неподготовленные люди (например, такие как я) временами могут терять нить авторских рассуждений. Впрочем, разве автор виноват, что они в школе плохо учили физику? Ничего большего, чем базовые понятия, что пытались нам дать школьные учителя тут и не требуются.

Спешу обрадовать поклонников Ника Перумова! Мультивселенная, о в одной из глав книги которой рассказывает Хокинг очень похожа (да какой там похожа, один в один, хоть объявляй конкурс «найди десять отличий») на Упорядоченное. Так что можно сказать, фентази оперирует современными физическими теориями.

На этом, разумеется, содержание книги не исчерпывается и Автор рассказывает о вещах совершенно фантастических. Например, о возможности путешествия во времени. Или о тех самых «кротовых норах», о которых много говорят, но мало кто знает.

Итог: Рука не подымается поставить этой книге ниже десяти баллов. Перед нами шедевр, да-да, шедевр научно-популярной литературы в области физики. Более того, в кои-то веки шедевр получил достойное оформление в виде идеального издания (как этого не хватает книге Брайна Грина «Элегантная вселенная»!) Всем, кому хоть капельку интересно, над чем бьются лучшие умы современности – читать обязательно.

Оценка: 10

Книга хороша, но не так хороша как, сделавшая в свое время просто фурор в научно-популярной литературе «Краткая история времени».

Здесь много больших красочных рисунков, нет сложных формул, все разжевывается буквально на пальцах. Идеи действительно очень сложны и изложить их вот так простыми словами не всегда возможно... тем не менее автор пытается это сделать. На мой взгляд чрезмерное упрощение материала значительно повредило книге с точки зрения информативности. Остается много вопросов у людей, которые хотят докопаться до истины самостоятельно, поэтому, в конечном счете, приходится покупать дополнительную литературу: Браяна Грина, Вайнберга, Пенроуза. Отдельно хчется отметить изданные Амфорой труды по теории относительности Эйнштейна (Серия так и называется - «Библиотека Стивена Хокинга»).

Я не ожидал, что моя научно-популярная книга «Краткая история времени» окажется настолько успешной. В списке бестселлеров лондонской «Санди тайме» она продержалась более четырех лет - дольше любой другой книги, что особенно удивительно для издания о науке, ведь они обычно расходятся не очень быстро. Потом люди стали спрашивать, когда ожидать продолжения. Я противился, мне не хотелось писать что-то вроде «Продолжения краткой истории» или «Немного более длинной истории времени». А еще я был занят исследованиями. Но постепенно стало ясно, что можно написать другую книгу, которая имеет шанс оказаться проще для понимания. «Краткая история времени» была построена по линейной схеме: в большинстве случаев каждая следующая глава логически связана с предшествующими. Одним читателям это нравилось, но другие, застряв на первых главах, так и не добирались до более интересных тем. Настоящая книга построена иначе - она скорее похожа на дерево: главы 1 и 2 образуют ствол, от которого отходят ветви остальных глав.

Эти «ответвления» в значительной степени независимы друг от друга, и, получив представление о «стволе», читатель может знакомиться с ними в произвольном порядке. Они связаны с областями, в которых я работал или о которых размышлял после публикации «Краткой истории времени». То есть отображают наиболее активно развивающиеся направления современных исследований. Внутри каждой главы я также попытался уйти от линейной структуры. Иллюстрации и подписи к ним указывают читателю альтернативный маршрут, как в «Иллюстрированной краткой истории времени», изданной в 1996 г. Врезки и замечания на полях позволяют затронуть некоторые темы глубже, чем это возможно в основном тексте.

В 1988 г., когда впервые вышла «Краткая история времени», впечатление было такое, что окончательная Теория Всего едва-едва замаячила на горизонте. Насколько с тех пор изменилась ситуация? Приблизились ли мы к нашей цели? Как вы узнаете из этой книги, прогресс был весьма значительным. Но путешествие еще продолжается, и конца ему пока не видно. Как говорится, лучше продолжать путь с надеждой, чем прибыть к цели . Наши поиски и открытия питают творческую активность во всех сферах, не только в науке. Если мы достигнем конца пути, человеческий дух иссохнет и умрет. Но я не думаю, что мы когда-либо остановимся: будем двигаться если не в глубину, то в сторону усложнения, всегда оставаясь в центре расширяющегося горизонта возможностей.

В работе над этой книгой у меня было много помощников. Особо я хотел бы отметить Томаса Хертога и Нила Ширера за их помощь с рисунками, подписями и врезками, Энн Харрис и Китти Фергюссон, которые редактировали рукопись (или, точнее, компьютерные файлы, поскольку все, что я пишу, появляется в электронной форме), Филиппа Данна из Book Laboratory и Moonrunner Design, который создал иллюстрации. Но кроме того, я хочу поблагодарить всех тех, кто дал мне возможность вести нормальную жизнь и заниматься научными исследованиями. Без них эта книга не была бы написана.

Краткая история относительности

О том, как Эйнштейн заложил основы

двух фундаментальных теорий ХХ века:

общей теории относительности и квантовой механики

Альберт Эйнштейн, создатель специальной и общей теорий относительности, родился в 1879 г. в немецком городе Ульме, позднее семья перебралась в Мюнхен, где у отца будущего ученого, Германа, и его дяди, Якоба, была небольшая и не слишком преуспевающая электротехническая фирма. Альберт не был вундеркиндом, но утверждения, будто он не успевал в школе, выглядят преувеличением. В 1894 г. бизнес его отца прогорел, и семья переехала в Милан. Родители решили оставить Альберта в Германии до окончания школы, но он не выносил немецкого авторитаризма и спустя несколько месяцев бросил школу, отправившись в Италию к своей семье. Позднее он завершил образование в Цюрихе, получив в 1900 г. диплом престижного Политехникума (E idgenössische T echnische H ochschule - Высшее техническое училище). Склонность к спорам и нелюбовь к начальству помешали Эйнштейну наладить отношения с профессорами ЕТН, так что никто из них не предложил ему места ассистента, с которого обычно начиналась академическая карьера. Только через два года молодому человеку наконец удалось устроиться на должность младшего клерка в Швейцарском патентном бюро в Берне. Именно в тот период, в 1905 г., он написал три статьи, которые не только сделали Эйнштейна одним из ведущих ученых мира, но и положили начало двум научным революциям - революциям, которые изменили наши представления о времени, пространстве и самой реальности.

К концу XIX века ученые считали, что вплотную подошли к исчерпывающему описанию Вселенной. По их представлениям, пространство было заполнено непрерывной средой - «эфиром». Лучи света и радиосигналы рассматривались как волны эфира, подобно тому как звук представляет собой волны плотности воздуха. Все, что требовалось для завершения теории, - это тщательно измерить упругие свойства эфира. Имея в виду эту задачу, Джефферсоновскую лабораторию в Гарвардском университете построили без единого железного гвоздя, чтобы избежать возможных помех в тончайших магнитных измерениях. Однако проектировщики забыли, что красно-коричневый кирпич, который использовался при возведении лаборатории, да и большинства других зданий Гарварда, содержит значительное количество железа. Здание служит по сей день, но в Гарварде так и не знают, какой вес смогут выдержать перекрытия библиотеки, не содержащие железных гвоздей.

К концу столетия концепция всепроникающего эфира начала сталкиваться с трудностями. Ожидалось, что свет должен распространяться по эфиру с фиксированной скоростью, но если вы сами движетесь сквозь эфир в том же направлении, что и свет, скорость света должна казаться меньше, а если вы движетесь в противоположном направлении, скорость света окажется больше (рис. 1.1).

Рис. 1.1 Теория неподвижного эфира

Если бы свет был волной в упругом веществе, называемом эфиром, его скорость казалась бы выше тому, кто движется на космическом корабле ему навстречу (а), и ниже - тому, кто движется в том же направлении, что и свет (б).

Однако в ряде экспериментов эти представления не удалось подтвердить. Наиболее точный и корректный из них осуществили в 1887 г. Альберт Майкельсон и Эдвард Морли в Школе прикладных наук Кейза, Кливленд, штат Огайо. Они сравнили скорость света в двух лучах, идущих под прямым углом друг к другу. Поскольку Земля вращается вокруг своей оси и обращается вокруг Солнца, скорость и направление движения аппаратуры сквозь эфир меняется (рис. 1.2). Но Майкельсон и Морли не обнаружили ни суточных, ни годичных различий в скорости света в двух лучах. Получалось, будто свет всегда движется относительно вас с одной и той же скоростью, независимо от того, как быстро и в каком направлении движетесь вы сами (рис. 1.3).