Строительство и ремонт

Создатель геоцентрической системы. Круговое, вечное

РОССИЙКИЙ ГОСУДАРСТВЕННЫЙ СОЦИАЛЬНЫЙ УНИВЕРСИТЕТ МИНИСТЕРСТВА ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Филиал Российского государственного социального университета

Министерства образования и науки РФ в г. Тольятти Самарской области

Кафедра: «СОЦИАЛЬНОЕ УПРАВЛЕНИЕ»

КОНТРОЛЬНАЯ РАБОТА

По курсу «Концепции современного естествознания»

На тему: «Геоцентрическая система мира»

Выполнила: студентка 3-го курса

группы МС-7/05 Кривякина Т.С.

Проверил: Филипова Г.Р.

Тольятти 2008


Введение

Аристотелевская система мира

Строение геоцентрической системы мира

Птолемеевская система мира

Заключение

Список литературы

Введение

Для усовершенствования теорий движений планет потребовалось основательное знание геометрии, разработанной в Греции (не раньше 4 в. до н. э.). В это время Евдокс Книдский, предшественник Аристотеля, создал теорию гомоцентрических сфер (дошедшую до нас лишь в пересказе Аристотеля), согласно которой планета прикреплена к поверхности полой сферы, равномерно вращающейся внутри другой сферы, тоже вращающейся вокруг оси, не совпадающей с осью вращения первой сферы. В центре этих сфер находится Земля. Для представления сложного движения некоторых планет потребовалось несколько таких концентрических сфер, общее число которых доведено учеником Евдокса Калиппом до 55. Позже, в 3 в. до н. э., греческий геометр Аполлоний Пергский упростил эту теорию, заменив вращающиеся сферы кругами, и этим положил основу теории эпициклов, получившую своё завершение в сочинении древнегреческого астронома Птолемея (2 в. н. э.), известном под названием «Альмагест». Принималось, что все небесные светила движутся по окружностям и притом равномерно. Неравномерные движения планет, изменения направления их движения объясняли, предполагая, что они одновременно участвуют в нескольких круговых равномерных движениях, происходящих в разных плоскостях и с разными скоростями. Земля, о шарообразности которой учила уже Пифагорейская школа в 6 в. до н. э., считалась покоящейся в центре Вселенной, что соответствовало непосредственному впечатлению, создаваемому видом звёздного неба.

Для практического применения теория эпициклов нуждалась в значениях величин, определяющих периоды обращения планет, взаимные наклоны их орбит, длины дуг попятных движений и т. п., которые можно было получить только из наблюдений, измеряя соответствующие промежутки времени и углы.

Геоцентрическая система мира - возникшее в древнегреческой науке и сохранившееся вплоть до позднего средневековья представление о центральном положении Земли во Вселенной. В соответствии с ним все небесные светила (планеты, Солнце и другие) обращаются вокруг Земли по круговым орбитам.


Аристотелевская система мира

Начиная с IV века до н. э. греческие мыслители строят геометрические модели мира, призванные объяснить движение небесных светил. Рождению новой космологической модели способствовал самый выдающийся ученый Древней Греции – Аристотель (384 – 322 гг. до н. э.). На основе достижений всей греческой науки он создал единую научную систему, сформировал детально разработанное мировоззрение. Аристотель превратил сведения о видимых небесных явлениях и движениях светил в стройную теорию – систему мира. Система мира по Аристотелю основывалась на четырех принципах, являвшихся синтезом всей греческой науки.

Принципы, лежащие в основе геоцентрической системы мира

1. Небесный свод (сфера неподвижных звезд) – опора для звезд и граница между небом и землей. Он за сутки делает полный оборот вокруг оси, соединяющей северный полюс неба с южным. Ось вращения пересекается с небесной сферой в двух неподвижных точках – полюсах мира. Принцип сохранился до Коперника.

2. Одухотворенность небесных тел: звезды, как и другие небесные тела, обладают душой, приводящей их в движение.

3. Принцип небесного совершенства:

“…космос как единое целое, составленное из целостных же частей, совершенное и непричастное дряхлению и недугам. Затем Бог путем вращения округлил космос до состояния сферы, поверхность которой всюду равно отстоит от центра…” – Платон.

Небесное совершенство обусловлено несколькими обстоятельствами:

· Небеса идеальны во всех отношениях. Они сами и их опоры состоят из вечной материи – эфира. Эфир, согласно Аристотелю, - самый легкий элемент, который, лежит на границе между материальным и нематериальным. Эфир не может превращаться в другие элементы, следовательно, он не может ни возникать, ни уничтожаться. Потому для небесных тел и возможно движение, которое недоступно ничему земному. Поэтому и небо не могло возникнуть, и, следовательно, мир существует вечно.

· Все небесные тела и Земля шарообразны. Шар и сфера, идеальные геометрические фигуры. Шар при вращении вокруг собственной оси всегда занимает одну и ту же часть пространства. Сфера – геометрическое тело, все точки поверхности которой равноудалены от центра. Концепция шарообразной формы тел во Вселенной и самой Вселенной вошла в основу всех последующих конструкций Вселенной.

· В небесах реализуется только совершенное движение: совершенное движение – это вечное, равномерное круговое движение.

4. Музыка сфер: в основе небесных явлений лежат математические закономерности. Существование восьми небесных сфер и такого же числа тонов музыкальной гаммы подтверждали это. Каждая сфера поет свою ноту, и восемь нот сливаются в гармонию – музыку неба.

Все принципы подчинены главной концепции древних греков: миром правит гармония. Примером небесной гармонии являются Платоновы тела. Существует всего пять правильных выпуклых многогранников разной формы.Впервые исследованные пифагорейцами, эти пять правильных выпуклых многогранника были впоследствии подробно описаны Платоном и стали называться в математике платоновыми телами. Все грани многогранников – одинаковые правильные многоугольники, все многогранные углы равны. С помощью треугольников Платон строит четыре правильных многогранника, ассоциируя их с четырьмя земными элементами (землей, водой, воздухом и огнем). И лишь последний из пяти существующих правильных многогранников – додекаэдр, всеми двенадцатью гранями которого служат правильные пятиугольники, претендует на символическое изображение небесного мира.


рис. Платоновские многогранники

Честь открытия додекаэдра (или, как полагалось, самой Вселенной, этой квинтэссенции четырех стихий, символизируемых, соответственно, тетраэдром, октаэдром, икосаэдром и кубом) принадлежит Гиппасу, впоследствии погибшему при кораблекрушении. В этой фигуре запечатлено множество отношений золотого сечения, поэтому ему отводилась главная роль в небесном мире.

Строение геоцентрической системы мира

Аристотелевская модель Вселенной имела четкое строение. Она напоминала луковицу.

1. У Вселенной есть центр. Это – неподвижная Земля.

Неподвижность Земли в центре Мира я просто постулировал, чтобы обосновать реальность суточного вращения всего небосвода. По кинематическому принципу относительности движения, если Земля неподвижна, то небо движется. Поскольку шарообразность Вселенной была "видна" простым глазом (форма небосвода, круговое суточное движение небесных светил), в такой ограниченной Вселенной обязательно должен существовать центр как точка, равноудаленная от периферии. Центральное положение Земли следовало из общих свойств Вселенной: самый тяжелый элемент – “земля”, в основном составляющий земной шар, не может не быть всегда в центре Мира”- Аристотель

· Вокруг Земли обращаются прозрачные твердые сферы с прикрепленными к ним небесными телами (планеты) в следующей последовательности: Луна, Солнце, Венера, Меркурий, Марс, Юпитер, Сатурн.

· Первичной причиной движения служит вращение сферы неподвижных звезд. Движение первой сферы передается другим сферам – все ниже и ниже вплоть до Земли. Вся модель содержала в общей сложности 55 сфер, как бы вложенных друг в друга и передающих движение друг другу.

· “Подлунный” мир, т. е. область между орбитой Луны и центром Земли, есть область беспорядочных неравномерных движений. Круговое движение ей не свойственно и есть для нее нечто насильственное. Все тела в этой области состоят из четырёх низших элементов: земли, воды, воздуха и огня. Земля как наиболее тяжёлый элемент занимает центральное место, над ней последовательно располагаются оболочки воды, воздуха и огня.

· “Надлунный” мир, т. е. область между орбитой Луны и крайней сферой неподвижных звёзд, есть область вечно равномерных движений, а сами звёзды состоят из пятого – совершеннейшего элемента – эфира.

· За последней сферой мира пребывает только бог. Никакого другого бытия, запредельного миру, не может быть.

· Телам, которым свойственны определенные движения. Это движение по направлению к центру мира, к его периферии и круговое движение. Но все эти виды движения возможны только в сфере. А так как за границами сферы не существует ничего, то за ней не может существовать и пустота. Мир объемлет в себе не только все место, но и все время. Само по себе время – мера движения. Так как движение не распространяется на область, запредельную миру, то не распространяется на нее и время.

Птолемеевская система мира

Попытка решения трудностей в модели Аристотеля была предпринята выдающимся александрийским ученым Клавдием Птолемеем. Клавдий Птолемей (90–168 г.г. н. э.) – выдающийся греко-египетский астроном, астролог, математик, географ и оптик, вероятно, родом из Птолемиады в Среднем Египте. В своей работе “Великое построение”, известной под своим арабским именем “Альмагест”, Птолемей опирался на открытия своих предшественников, в частности Аристарха Самосского и Гиппарха. Опираясь на глубокую традицию греческой геометрии, Птолемей преобразовал космологию Аристотеля в математическую модель Вселенной. Для каждой планеты он разработал свою теорию, состоящую из разнообразных геометрических приемов. Было предположено, что планеты одновременно участвуют в двух независимых, но “совершенных” движениях. Наблюдаемое “несовершенное” движение есть результат сложения совершенных движений (Евдокс Книдский 406 г. до н. э.). Идея разложения движения планет на две составляющие положила начало успешному решению вышеупомянутых проблем. Для согласования геоцентрической модели с наблюдениями, Птолемей перестроил геометрическую модель Вселенной Аристотеля используя комбинацию

· деферентов (лат. deferentis – несущий),

· эксцентров (смещенный центр)

· и эпициклов (лат. epi kyklos – на круге).

Деферент – главная несущая окружность каждой планеты. По деференту равномерно движется не сама планета, а центр S второй окружности меньшего диаметра – эпицикла. Сама планета равномерно движется по эпициклу. Центры эпициклов нижних планет лежали на прямой, соединяющей Землю и Солнце. Для верхних планет тоже вводилось ограничение: отрезок, соединяющий верхнюю планету с центром ее эпицикла параллелен прямой, соединяющей Землю с Солнцем.


Заключение

Астрономия в средние века. «Альмагест» Птолемея, в котором были подытожены астрономические знания того времени, оставался в течение многих веков фундаментом геоцентрической системы мира. Возникновение христианства с его догматизмом, нашествия варваров привели к упадку естествознания и, в частности, в средние века.

В течение целого тысячелетия в Европе было мало прибавлено, но много позабыто из того, что было известно о строении Вселенной благодаря трудам учёных античного мира. Священное писание явилось каноном, из которого черпались ответы на все вопросы.Лишь арабы и соприкасавшиеся с ними народы сделали попытку если не реформировать Астрономия в средние века. «Альмагест» Птолемея, в котором были подытожены астрономические знания того времени, оставался в течение многих веков фундаментом геоцентрической системы мира. Возникновение христианства с его догматизмом, нашествия варваров привели к упадку естествознания и, в частности, А. в средние века. В течение целого тысячелетия в Европе было мало прибавлено, но много позабыто из того, что было известно о строении Вселенной благодаря трудам учёных античного мира. Священное писание явилось каноном, из которого черпались ответы на все вопросы, в том числе и из области Астрономии.

Лишь арабы и соприкасавшиеся с ними народы сделали попытку если не реформировать Астрономию, то по крайней мере уточнить новыми наблюдениями старые теории. Багдадский халиф аль-Мамун распорядился в 827 перевести сочинение Птолемея с греческого на арабский язык. Арабский учёный аль-Баттаии в конце 9 – начале 10 вв. произвёл многочисленные наблюдения, уточнив значения годичной прецессии, наклона эклиптики к экватору, эксцентриситета и долготы перигея орбиты Солнца. В том же 10 в. арабский астроном Абу-ль-Вефа открыл одно из неравенств (неправильностей) в движении Луны. Большие заслуги в развитии Астрономии принадлежат Абу Рейхану Вируни (Хорезм, конец 10 – 11 вв.), автору разнообразных астрономических исследований. Астрономия процветала у арабских народов и в Ср. Азии вплоть до 15 в. Многие крупнейшие учёные наряду с другими науками занимались уточнением астрономических постоянных геоцентрической теории. Особенно известны астрономические таблицы, составленные в 1252 еврейскими и мавританскими учёными по распоряжению Кастильского правителя Альфонса Х и поэтому называвшиеся альфонсовыми. Наблюдательная Астрономия получила развитие в Азербайджане, где Насирэддин Туей соорудил большую обсерваторию в Мараге. По размерам, количеству и качеству инструментов выдающееся место заняла обсерватория Улугбека в Самарканде, где в 1420–37 был составлен новый большой каталог звёзд. Арабы сохранили от забвения классическую Астрономию греков, обновили планетные таблицы, развили теорию, но, следуя Птолемею, не внесли в А. коренных реформ. В эту эпоху астрономические наблюдения производились также в Китае и Индии.В 12–13 вв. некоторое оживление естествознания стало замечаться также и в Европе. Постепенно, не без влияния арабов, наиболее просвещённые люди знакомились с наукой и философией древних греков, сочинения которых переводили (часто с арабского) на латинский язык. Учение Аристотеля было признано согласным с церковной догмой: геоцентрическая система мира не противоречила священному писанию. В Италии, а затем и в других странах Зап. Европы учреждались университеты, которые, хотя и находились под сильным влиянием церковной схоластики, всё же содействовали развитию естествознания.


Список литературы

1. История: Учебник / Под общ. ред. проф. О.Д. Кузнецовой и проф. И.Н. Шапкина. Москва, 2000.

2. Вощанова Г.П., Годзина Г.С. История: Учеб. пособие. Москва, 1998.

3. Россия и мир: Учебная книга по истории. В 2-х частях. Часть II. / Под общей редакцией проф. А.А. Данилова. Москва, 1994.

4. Лойберг М.Я. История: Учебное пособие. 2001.

Коперник пусть разглядывает звезды.

Любовь - моя звезда, мой свет и воздух...

Р. Гамзатов

Классическую форму теории эпициклических движений придал александрийский астроном Клавдий Птолемей (II в.н.э.) в его знаменитом сочинении «Альмагест» (арабское название, у древних греков называлос «Мегале Синтаксис», т.е. «Великое построение»). В этой книге Птолеме сделал то, что не удавалось ни одному из его предшественников. Он разработал метод, пользуясь которым можно было рассчитать положени планеты на любой наперед заданный момент времени. Это сочинение дас стройную теорию планетных движений, но исходит из неверного принципа неподвижности Земли в центре мира. Это была логически стройна кинематическая схема Вселенной, которая, несмотря на ложность свои теоретических построений, давала удовлетворительное описание основных особенностей видимого движения небесных тел. В историю науки он вошла как геоцентрическая система мира.

В Средневековье надолго затормозилось развитие науки. Системы мира Аристотеля и Птолемея были признаны согласными с религиозно идеологией. Основа христианской религии - тезис искупления (пришествие на Землю бога для спасения людей) гармонировал с представлением об исключительном положении Земли как центра мира. Некоторы подъем астрономической науки в средние века нужно отметить у арабов народов Средней Азии и Кавказа. Труды Птолемея вместе с другими древними астрономическими источниками послужили отправной точкой дл ряда усовершенствований геоцентрической системы мира, разработанно средневековыми учеными и философами, в особенности Ибн-Хайсамо (известным в Европе иод именем Альхазена) и Ибн-Шатиром, принадлежавшим к астрономической школе Насир-эд-Дина Туей (XIII в.).

Аль-Батани (но прозванию Альбатегниус (850-929 гг. н.э.) заново и точнее определил и проверил многие из результатов Гиппарха и Птолемея. Великом хорезмскому ученому Абу-Райхану Бируни (972-1048 гг. н.э.) принадлежи определение размеров Земли по углу понижения горизонта с вершины горы Он же выразил мнение о возможности движения Земли вокруг Солнца Соорудив обсерваторию с весьма точными для того времени измерительным инструментами, талантливый самаркандский астроном Улугбек (Мухамма Турагай - внук известного завоевателя Тамерлана) составил новый каталог звезд - первый самостоятельный после Гиппарха и более точный: положения звезд даны в нем нс только в градусах, но и в минутах дуги.

В средние века в научно-философской среде мусульманского Востока и христианского Запада предметом особого обсуждения стал вопро о физической реальности птолемеевских эпициклов и деферентов. По мнению Абу Райхана Бируни, эпициклы и деференты имеют вполне реальное физическое существование. В то же время другой крупный представитель научно-философской мысли Средневековья Ибн Рушд (Аверроэс)В хотя и допускал, что эпициклы и деференты сами по себе нужны для расчета и предсказания положения планет, вместе с тем оспаривал мнение согласно которому эпициклы и деференты существуют внутри реальног космоса в актуально-физическом смысле.

Значительным шагом вперед было геологическое учение Ибн-Сины (Авиценны). Впервые в истории науки он открыл закон последовательности залегания осадочных пород (500 лет спустя его вновь открыл датский естествоиспытатель Николай Стено). Это открытие послужило отправным пунктом для формулировки Авиценной более общей научной концепции - учени об эволюции земной коры. К идее эволюции независимо от Ибн-Сины пришел также его современник Абу Райхан Бируни. Это учение имело огромно мировоззренческое значение вследствие того, что идея постоянного изменения земной поверхности резко противоречила религиозному постулат о единовременном и совокупном творении всего космоса и его пребывани в дальнейшем в вековечном, абсолютно неизменном состоянии. Между Иб Синой и Бируни дискутировалась также проблема существования изолированных миров. Согласно Бируни, вполне допустимо, что «другой мир обладает теми же природными свойствами, что и наш мир, но только эти свойства созданы таким образом, что направления движения в нем отличаютс от направлений движения в окружающем мире и что каждый из этих миро отделен от другого некоей преградой». Судя по аргументации, приведенно Ибн Синой, против такой постановки вопроса о множественности миров, ег прежде всего волновала проблема существования пустоты и связанный с не вопрос о физической природе преграды, отделяющей эти миры друг от друга Бируни же допускал возможность существования других миров иной природы, отделенных некоей преградой от нашего мира. Эти вопросы, интересовавшие мыслителей Средневековья, исторически соотносимы с некоторым современными космологическими моделями пространственной локализаци системы «мир-антимир», многомерными пространствами.

У разных ученых начинают намечаться попытки нового подхода к объяснению небесных явлений, пока, наконец, польский мыслитель - Николай Коперник не сделал великого шага к созданию нового мировоззрения, давшего толчок мощному развитию астрономии как науки. Основой возникновения всех этих новых идей является грандиозный хозяйственный переворот. Великое свое творение Коперник изложил в книге «Об обращения небесных сфер», появление которой относится к 1543 г., т.е. к году смерт Коперника, и составляет результат многолетних его работ. Геоцентрическа система Птолемея с течением времени усложнялась, поскольку повышенны требования к точности астрономических вычислений делали необходимым увеличение количества дополнительных окружностей (эпициклов, деферентов), чтобы согласовать систему с Землей в центре и вращающимися вокруг нее по окружностям планетами с наблюдаемыми движениями эти планет. Ко времени Коперника число деферентов и эпициклов возросл до 56 и имело тенденцию расти дальше. Уже в античности многие мыслител не были удовлетворены такой сложной «неестественной»конструкцией Один из них (Прокл) считал, что эпициклы - всего лишь умственны построения, созданные для «спасения явлений», и что пути планет на само деле являются сложными и неравномерными, а другие (Симплиций)В вообще полагали, что сложные пути планет - видимость, за которой находится некая непознанная глубинная сущность.

Вместе с тем громоздкость птолемеевской системы не позволяла давать точных данных о движении Солнца и Луны, а это, в свою очередь, тормозило реформу юлианского календаря. Вселенная Птолемея заметно упростилась бы, если принять, что в центре ее находится не Земля, а Солнце Чтобы произвести такой революционный шаг понадобился гениальный у Николая Коперника, создавшего гелиоцентрическую систему мира. В е основе лежали следующие утверждения:

  • 1. В центре мира находится Солнце.
  • 2. Земля и другие планеты движутся вокруг Солнца в одном направлении и вращаются вокруг одного из своих диаметров.
  • 3. Это движение происходит по круговым орбитам.
  • 4. Оно является равномерным, т.е. скорости движения планет по круговым орбитам постоянны.

Полемизируя с аргументами Аристотеля и Птолемея, Коперник отметил, что «вращается не только Земля вместе с соединенной с ней водной стихией, но и немалая часть воздуха и все, что состоит в каком-либо родстве с Землей». Не следует удивляться и тому, что смещение звезд пр движении Земли не замечено. Ведь «размеры мира столь велики, что хотя расстояние от Земли до Солнца имеет достаточно большие размер по сравнению с размерами сферы любой планеты, оно тем не менее неощутимо мало по сравнению со сферой неподвижных звезд». Поэтому «легч принять это допущение, чем ломать голову над бесконечным множество сфер, как это вынуждены делать те, кто удерживает Землю в центре мира».

Впервые Коперник дал правильный план строения Солнечной системы, установив ее относительные масштабы. Приняв за единицу измерени расстояние от Земли до Солнца, он нашел, что расстояние от Солнц до Меркурия, Венеры, Марса, Юпитера и Сатурна равны соответственн 0,376; 0,723; 1,52; 5,217 и 9,184. За исключением последней, эти цифры почт не отличаются от современных. Учение Коперника произвело настоящу революцию не только в астрономии, но и в мировоззрении. Коперник сте грань между «земным» и «небесным».

Последующие шаги в создании новой картины мира были сделаны Галилеем и Кеплером - оба они были убежденными коперниканцами. Галилей впервые использовал подзорную трубу собственной конструкции для астрономических наблюдений, открыв горы на Луне, т.е. открыв, что Лун имеет не идеальную форму шара, присущую якобы лишь телам «небесной природы», а имеет вполне «земную» природу. Таким образом, была поколеблена идея, идущая еще от Аристотеля, о принципиальном различии между «совершенными» небесными телами и несовершенными земными Другие его астрономические открытия: открытие четырех спутников Юпитера (1610 г.), обнаружение фаз Венеры, наличие пятен на Солнце - имел огромное мировоззренческое значение, подтверждающее материально единство мира. Наглядно было показано, что Земля не является единственным центром, вокруг которого должны обращаться все тела. Это было важным доказательством в пользу коперниковской системы мира.

При разработке своей системы мира Коперник исходил из предположения, что Земля и планеты обращаются вокруг Солнца по круговым орбитам. Поэтому, чтобы объяснить сложное движение планет по эклиптике, ем пришлось ввести в свою систему 48 эпициклов. И лишь благодаря усилия И. Кеплера система мира Коперника приобрела простой и стройный вид Кеплер совершил следующий шаг - открыл эллиптическую форму орби и законы, по которым планеты движутся вокруг Солнца. Первые два кепле-ровских закона были опубликованы в 1609 г., третий - в 1619 г. Наиболе важным для понимания общего устройства Солнечной системы был первый закон, гласивший, что планеты обращаются вокруг Солнца по эллиптическим орбитам, а Солнце находится в фокусе одного из этих эллипсов В свое время греки предполагали, что все небесные тела должны двигатьс по кругу, потому что круг - самая совершенная из всех кривых. Хотя грек знали много вещей об эллипсах и тщательно изучили их математически свойства, им никогда не приходило в голову, что, возможно, небесные тел движутся как-то иначе, нежели по кругам или сложным сочетаниям кругов Кеплер первым отважился высказать такую идею. Однако три его закон имеют решающее значение в истории пауки прежде всего потому, что он способствовали доказательству закона тяготения Ньютона.

Другим выдающимся копсрниканцем, старшим современником Галилея и Кеплера, был Джордано Бруно. Он выдвинул идею множественности миров которую можно трактовать как принцип эквивалентности разных мест во Вселенной и имеющую фундаментальное методологическое значение и в современной космологии. Основная идея натурфилософии Д. Бруно - бесконечност и однородность Вселенной, неисчислимость миров - звезд, тождественны по своей природе с Солнцем. У Бруно не только Земля, но и Солнце перестае быть центром Вселенной, последняя вообще не имеет центра. Он также допустил возможность существования внеземных цивилизаций.

Геоцентрическая система мира

Геоцентрическая система мира (от др.-греч. Γῆ, Γαῖα — Земля) — представление об устройстве мироздания, согласно которому центральное положение во Вселенной занимает неподвижная Земля, вокруг которой вращаются Солнце, Луна, планеты и звёзды. Альтернативой геоцентризму является гелиоцентрическая система мира.
Развитие геоцентризма
С древнейших времён Земля считалась центром мироздания. При этом предполагалось наличие центральной оси Вселенной и асимметрия «верх-низ». Землю от падения удерживала какая-то опора, в качестве которой в ранних цивилизациях мыслилось какое-то гигантское мифическое животное или животные (черепахи, слоны, киты). Первый древнегреческий философ Фалес Милетский в качестве этой опоры видел естественный объект — мировой океан. Анаксимандр Милетский предположил, что Вселенная является центрально-симметричной и в ней отсутствует какое-либо выделенное направление. Поэтому у находящейся в центре Космоса Земле отсутствует основание двигаться в каком-либо направлении, то есть она свободно покоится в центре Вселенной без опоры. Ученик Анаксимандра Анаксимен не последовал за учителем, полагая, что Земля удерживается от падения сжатым воздухом. Такого же мнения придерживался и Анаксагор. Точку зрения Анаксимандра разделяли, однако, пифагорейцы, Парменид и Птолемей. Не ясна позиция Демокрита: согласно разным свидетельствам, он последовал Анаксимандру или Анаксимену.

Одно из самых ранних дошедших до нас изображений геоцентрической системы (Макробий, Комментарий на Сон Сципиона, рукопись IX века)
Анаксимандр считал Землю имеющей форму низкого цилиндра с высотой в три раза меньше диаметра основания. Анаксимен, Анаксагор, Левкипп считали Землю плоской, наподобие крышки стола. Принципиально новый шаг сделал Пифагор, который предположил, что Земля имеет форму шара. В этом ему последовали не только пифагорейцы, но также Парменид, Платон, Аристотель. Так возникла каноническая форма геоцентрической системы, впоследствии активно разрабатываемая древнегреческими астрономами: шарообразная Земля находится в центре сферической Вселенной; видимое суточное движение небесных светил является отражением вращения Космоса вокруг мировой оси.

Средневековое изображение геоцентрической системы (из Космографии Петра Апиана, 1540 г.)
Что касается порядка следования светил, то Анаксимандр считал звёзды расположенными ближе всего к Земле, далее следовали Луна и Солнце. Анаксимен впервые предположил, что звёзды являются самыми далёкими от Земли объектами, закреплёнными на внешней оболочке Космоса. В этом ему следовали все последующие учёные (за исключением Эмпедокла, поддержавшего Анаксимандра). Возникло мнение (впервые, вероятно, у Анаксимена или пифагорейцев), что чем больше период обращения светила по небесной сфере, тем оно выше. Таким образом, порядок расположения светил оказывался таким: Луна, Солнце, Марс, Юпитер, Сатурн, звёзды. Сюда не включены Меркурий и Венера, потому что у греков были разногласия на их счёт: Аристотель и Платон помещали их сразу за Солнцем, Птолемей — между Луной и Солнцем. Аристотель считал, что выше сферы неподвижных звёзд нет ничего, даже пространства, в то время как стоики считали, что наш мир погружен в бесконечное пустое пространство; атомисты вслед за Демокритом полагали, что за нашим миром (ограниченным сферой неподвижных звёзд) находятся другие миры. Это мнение поддерживали эпикурейцы, его ярко изложил Лукреций в поэме «О природе вещей».

«Фигура небесных тел» — иллюстрация геоцентрической системы мира Птолемея, сделанная португальским картографом Бартоломеу Велью в 1568 году.
Хранится в Национальной библиотеке Франции.
Обоснование геоцентризма
Древнегреческие учёные по-разному, однако, обосновывали центральное положение и неподвижность Земли. Анаксимандр, как уже указывалось, в качестве причины указывал сферическую симметрию Космоса. Его не поддерживал Аристотель, выдвигая контрдовод, приписанный впоследствии Буридану: в таком случае человек, находящийся в центре комнаты, в которой у стен находится еда, должен умереть с голоду (см. Буриданов осёл). Сам Аристотель обосновывал геоцентризм следующим образом: Земля является тяжёлым телом, а естественным местом для тяжёлых тел является центр Вселенной; как показывает опыт, все тяжёлые тела падают отвесно, а поскольку они движутся к центру мира, Земля находится в центре. Кроме того, орбитальное движение Земли (которое предполагал пифагореец Филолай) Аристотель отвергал на том основании, что оно должно приводить к параллактическому смещению звёзд, которое не наблюдается.

Рисунок геоцентрической системы мира из Исландского манускрипта, датированного примерно 1750 годом
Ряд авторов приводит и другие эмпирические доводы. Плиний Старший в своей энциклопедии «Естественная история» обосновывает центральное положение Земли равенством дня и ночи во время равноденствий и тем, что во время равноденствия восход и заход наблюдается на одной и той же линии, а восход солнца в день летнего солнцестояния находится на той же линии, что и заход в день зимнего солнцестояния. С астрономической точки зрения, все эти доводы, конечно, являются недоразумением. Немногим лучше и доводы, приводимые Клеомедом в учебнике «Лекции по астрономии», где он обосновывает центральность Земли от противного. По его мнению, если бы Земля находилась к востоку от центра Вселенной, то тени на рассвете были бы короче, чем на закате, небесные тела при восходе казались бы больше, чем при заходе, а продолжительность с рассвета до полудня была бы меньше, чем от полудня до заката. Поскольку всего этого не наблюдается, Земля не может быть смещена к западу от центра мира. Аналогично доказывается, что Земля не может быть смещена к западу. Далее, если бы Земля располагалась севернее или южнее центра, тени на восходе Солнца простирались бы в северном или южном направлении, соответственно. Более того, на рассвете в дни равноденствий тени направлены точно в направлении захода Солнца в эти дни, а на восходе в день летнего солнцестояния тени указывают на точку захода Солнца в день зимнего солнцестояния. Это также указывает на то, что Земля не смещена к северу или югу от центра. Если бы Земля была выше центра, то можно было бы наблюдать меньше половины небосвода, в том числе менее шести знаков зодиака; как следствие, ночь всегда была бы длиннее дня. Аналогично доказывается, что Земля не может быть расположена ниже центра мира. Таким образом, она может находиться только в центре. Примерно такие же доводы в пользу центральности Земли приводит и Птолемей в Альмагесте, книга I. Разумеется, доводы Клеомеда и Птолемея доказывают только, что Вселенная гораздо больше Земли, и поэтому также являются несостоятельными.

Страницы из SACROBOSCO "Tractatus de Sphaera" с системой Птолемея - 1550 год
Птолемей пытается также обосновать и неподвижность Земли (Альмагест, книга I). Во-первых, если бы Земля смещалась от центра, то наблюдались бы только что описанные эффекты, а раз их нет, Земля всегда находится в центре. Другим доводом является вертикальность траекторий падающих тел. Отсутствие осевого вращения Земли Птолемей обосновывает следующим образом: если бы Земля вращалась, то «...все предметы, не опирающиеся на Землю, должны казаться совершающими такое же движение в обратном направлении; ни облака, ни другие летающие или парящие объекты никогда не будут видимы движущимися на восток, поскольку движение Земли к востоку будет всегда отбрасывать их, так что эти объекты будут казаться движущимися на запад, в обратном направлении». Несостоятельность этого довода стала ясна только после открытия основ механики.
Объяснение астрономических явлений с позиций геоцентризма
Наибольшей трудностью для древнегреческой астрономии являлось неравномерность движения небесных светил (особенно попятные движения планет), поскольку в пифагорейско-платоновской традиции (которой в значительной степени следовал и Аристотель), они считались божествами, которым надлежит совершать только равномерные движения. Для преодоления этой трудности создавались модели, в которых сложные видимые движения планет объяснялись как результат сложений нескольких равномерных движений по окружностям. Конкретным воплощением этого принципа являлись поддержанная Аристотелем теория гомоцентрических сфер Евдокса-Каллиппа и теория эпициклов Аполлония Пергского, Гиппарха и Птолемея. Впрочем, последний был вынужден частично отказаться от принципа равномерных движений, введя модель экванта.
Отказ от геоцентризма
В ходе научной революции XVII века выяснилось, геоцентризм несовместим с астрономическими фактами и противоречит физической теории; постепенно утвердилась гелиоцентрическая система мира. Основными событиями, приведшими к отказу от геоцентрической системы, были создание гелиоцентрической теории планетных движений Коперником, телескопические открытия Галилея, открытие законов Кеплера и, главное, создание классической механики и открытие закона всемирного тяготения Ньютоном.
Геоцентризм и религия
Уже одна из первых идей, оппозиционных геоцентризму (гелиоцентрическая гипотеза Аристарха Самосского) привела к реакции со стороны представителей религиозной философии: стоик Клеанф призвал привлечь Аристарха к суду за то, что он двигает с места «Очаг мира», имея в виду Землю; неизвестно, впрочем, увенчались ли старания Клеанфа успехом. В Средневековье, поскольку христианская церковь учила, что весь мир создан Богом ради человека (см. Антропоцентризм), геоцентризм также успешно адаптировался к христианству. Этому способствовало также буквальное прочтение Библии. Научная революция XVII веке сопровождалась попытками административного запрета гелиоцентрической системы, что привело, в частности, к судебному процессу над сторонником и пропагандистом гелиоцентризма Галилео Галилеем. В настоящее время геоцентризм как религиозная вера встречается среди некоторых консервативных протестантских групп в США.
Список литературы
Source: http://ru.wikipedia.org/

«Физика - 10 класс»

Если тело относительно определённой инерциальной системы отсчёта движется с постоянной скоростью то 1 , по отношению к системе отсчёта, которая сама движется со скоростью , это тело согласно закону сложения скоростей будет двигаться с некоторой новой, но также постоянной скоростью 2 = 1 + . Ускорение тела в обеих системах отсчёта равно нулю.

Напротив, любая система отсчёта, движущаяся с ускорением относительно инерциальной системы отсчёта, уже будет неинерциальной. Действительно, если 1 = const, а скорость изменяется, то скорость 2 также будет меняться с течением времени. Следовательно, характер движения тела будет изменяться при переходе от одной системы отсчёта к другой: в первой системе отсчёта движение тела равномерное, а во второй - ускоренное.

Так как систему отсчёта связанную с Землёй (рис. 2.27), можно приближённо рассматривать как инерциальную, то и системы отсчёта, связанные с поездом, движущимся с постоянной скоростью, или с кораблём, плывущим по прямой с неизменной скоростью, также будут инерциальными. Но как только поезд начнёт увеличивать свою скорость, связанная с ним система отсчёта перестанет быть инерциальной. Закон инерции и второй закон Ньютона перестанут выполняться, если рассматривать движение по отношению к таким системам.

Геоцентрическая система отсчёта инерциальна лишь приближённо.

Наиболее близка к инерциальной система отсчёта, связанная с Солнцем и неподвижными звёздами (рис. 2.28). Земля же движется по отношению к этой системе отсчёта с ускорением. Во-первых, она вращается вокруг своей оси и, во-вторых, движется по замкнутой орбите вокруг Солнца.

Ускорение, обусловленное обращением Земли вокруг Солнца, очень мало, так как велик период обращения (год). Значительно больше (примерно в 6 раз) ускорение, возникающее из-за вращения Земли вокруг оси с периодом Т = 24 ч. Но и оно невелико. На поверхности Земли у экватора, где это ускорение наибольшее, оно равно:

т е. составляет всего 0,35% от ускорения свободного падения g = = 9,8 м/с2. Именно поэтому систему отсчёта, связанную с Землёй, можно лишь приближённо рассматривать как инерциальную.

Доказательство вращения Земли.


Однако существуют явления, которые нельзя объяснить, если считать геоцентрическую систему отсчёта инерциальной. К ним относится вращение относительно Земли плоскости колебаний маятника в знаменитом опыте Фуко, доказывающем вращение Земли.

Впервые опыт с маятником был выполнен французским физиком-экспериментатором Жаном Фуко (1819-1868) в узком кругу. Его результаты заинтересовали Л. Бонапарта, и он предложил Фуко провести демонстрацию этого опыта в грандиозном масштабе под куполом Пантеона в Париже в присутствии множества зрителей. Эту публичную демонстрацию, устроенную в 1851 г., и принято называть опытом Фуко.

Рассмотрим колебания маятника в гелиоцентрической инерциальной системе отсчёта. Для большей наглядности и простоты будем считать, что опыт проводится на полюсе.

Пусть в начальный момент маятник отклоняют от положения равновесия. Действующие на маятник сила притяжения к Земле T и сила упругости подвеса маятника лежат в той же вертикальной плоскости (рис. 2.29). Согласно второму закону Ньютона ускорение маятника совпадает по направлению с равнодействующей силой и поэтому лежит в той же вертикальной плоскости. А это значит, что с течением времени плоскость колебаний маятника в инерциальной системе отсчёта должна оставаться неизменной. Так и происходит в гелиоцентрической системе. Однако система отсчёта, связанная с Землёй, не является инерциальной, и относительно неё плоскость колебаний маятника поворачивается вследствие вращения Земли. Чтобы это обнаружить, необходимо подвес сделать таким, чтобы трение в нём было мало, а сам маятник - достаточно массивным. Иначе трение в подвесе заставит плоскость колебаний следовать за вращением Земли.

Смещение плоскости колебаний маятника относительно Земли становится заметным уже через несколько минут. На средних широтах колебания маятника будут выглядеть несколько сложнее, но суть явления не изменится.

Геоцентрическая система мира (от др.-греч. Γῆ, Γαῖα - Земля) - представление об устройстве мироздания, согласно которому центральное положение во Вселенной занимает неподвижная Земля, вокруг которой вращаются Солнце, Луна, планеты и звёзды. Альтернативой геоцентризму является гелиоцентрическая система мира.

Развитие геоцентризма

С древнейших времён Земля считалась центром мироздания. При этом предполагалось наличие центральной оси Вселенной и асимметрия «верх-низ». Землю от падения удерживала какая-то опора, в качестве которой в ранних цивилизациях мыслилось какое-то гигантское мифическое животное или животные (черепахи, слоны, киты). Первый древнегреческий философ Фалес Милетский в качестве этой опоры видел естественный объект - мировой океан. Анаксимандр Милетский предположил, что Вселенная является центрально-симметричной и в ней отсутствует какое-либо выделенное направление. Поэтому у находящейся в центре Космоса Земле отсутствует основание двигаться в каком-либо направлении, то есть она свободно покоится в центре Вселенной без опоры. Ученик Анаксимандра Анаксимен не последовал за учителем, полагая, что Земля удерживается от падения сжатым воздухом. Такого же мнения придерживался и Анаксагор. Точку зрения Анаксимандра разделяли, однако, пифагорейцы, Парменид и Птолемей. Не ясна позиция Демокрита: согласно разным свидетельствам, он последовал Анаксимандру или Анаксимену.

Одно из самых ранних дошедших до нас изображений геоцентрической системы (Макробий, Комментарий на Сон Сципиона, рукопись IX века)

Анаксимандр считал Землю имеющей форму низкого цилиндра с высотой в три раза меньше диаметра основания. Анаксимен, Анаксагор, Левкипп считали Землю плоской, наподобие крышки стола. Принципиально новый шаг сделал Пифагор, который предположил, что Земля имеет форму шара. В этом ему последовали не только пифагорейцы, но также Парменид, Платон, Аристотель. Так возникла каноническая форма геоцентрической системы, впоследствии активно разрабатываемая древнегреческими астрономами: шарообразная Земля находится в центре сферической Вселенной; видимое суточное движение небесных светил является отражением вращения Космоса вокруг мировой оси.

Средневековое изображение геоцентрической системы (из Космографии Петра Апиана, 1540 г.)

Что касается порядка следования светил, то Анаксимандр считал звёзды расположенными ближе всего к Земле, далее следовали Луна и Солнце. Анаксимен впервые предположил, что звёзды являются самыми далёкими от Земли объектами, закреплёнными на внешней оболочке Космоса. В этом ему следовали все последующие учёные (за исключением Эмпедокла, поддержавшего Анаксимандра). Возникло мнение (впервые, вероятно, у Анаксимена или пифагорейцев), что чем больше период обращения светила по небесной сфере, тем оно выше. Таким образом, порядок расположения светил оказывался таким: Луна, Солнце, Марс, Юпитер, Сатурн, звёзды. Сюда не включены Меркурий и Венера, потому что у греков были разногласия на их счёт: Аристотель и Платон помещали их сразу за Солнцем, Птолемей - между Луной и Солнцем. Аристотель считал, что выше сферы неподвижных звёзд нет ничего, даже пространства, в то время как стоики считали, что наш мир погружен в бесконечное пустое пространство; атомисты вслед за Демокритом полагали, что за нашим миром (ограниченным сферой неподвижных звёзд) находятся другие миры. Это мнение поддерживали эпикурейцы, его ярко изложил Лукреций в поэме «О природе вещей».


«Фигура небесных тел» - иллюстрация геоцентрической системы мира Птолемея, сделанная португальским картографом Бартоломеу Велью в 1568 году.

Хранится в Национальной библиотеке Франции.

Обоснование геоцентризма

Древнегреческие учёные по-разному, однако, обосновывали центральное положение и неподвижность Земли. Анаксимандр, как уже указывалось, в качестве причины указывал сферическую симметрию Космоса. Его не поддерживал Аристотель, выдвигая контрдовод, приписанный впоследствии Буридану: в таком случае человек, находящийся в центре комнаты, в которой у стен находится еда, должен умереть с голоду (см. Буриданов осёл). Сам Аристотель обосновывал геоцентризм следующим образом: Земля является тяжёлым телом, а естественным местом для тяжёлых тел является центр Вселенной; как показывает опыт, все тяжёлые тела падают отвесно, а поскольку они движутся к центру мира, Земля находится в центре. Кроме того, орбитальное движение Земли (которое предполагал пифагореец Филолай) Аристотель отвергал на том основании, что оно должно приводить к параллактическому смещению звёзд, которое не наблюдается.

Рисунок геоцентрической системы мира из Исландского манускрипта, датированного примерно 1750 годом

Ряд авторов приводит и другие эмпирические доводы. Плиний Старший в своей энциклопедии «Естественная история» обосновывает центральное положение Земли равенством дня и ночи во время равноденствий и тем, что во время равноденствия восход и заход наблюдается на одной и той же линии, а восход солнца в день летнего солнцестояния находится на той же линии, что и заход в день зимнего солнцестояния. С астрономической точки зрения, все эти доводы, конечно, являются недоразумением. Немногим лучше и доводы, приводимые Клеомедом в учебнике «Лекции по астрономии», где он обосновывает центральность Земли от противного. По его мнению, если бы Земля находилась к востоку от центра Вселенной, то тени на рассвете были бы короче, чем на закате, небесные тела при восходе казались бы больше, чем при заходе, а продолжительность с рассвета до полудня была бы меньше, чем от полудня до заката. Поскольку всего этого не наблюдается, Земля не может быть смещена к западу от центра мира. Аналогично доказывается, что Земля не может быть смещена к западу. Далее, если бы Земля располагалась севернее или южнее центра, тени на восходе Солнца простирались бы в северном или южном направлении, соответственно. Более того, на рассвете в дни равноденствий тени направлены точно в направлении захода Солнца в эти дни, а на восходе в день летнего солнцестояния тени указывают на точку захода Солнца в день зимнего солнцестояния. Это также указывает на то, что Земля не смещена к северу или югу от центра. Если бы Земля была выше центра, то можно было бы наблюдать меньше половины небосвода, в том числе менее шести знаков зодиака; как следствие, ночь всегда была бы длиннее дня. Аналогично доказывается, что Земля не может быть расположена ниже центра мира. Таким образом, она может находиться только в центре. Примерно такие же доводы в пользу центральности Земли приводит и Птолемей в Альмагесте, книга I. Разумеется, доводы Клеомеда и Птолемея доказывают только, что Вселенная гораздо больше Земли, и поэтому также являются несостоятельными.


Страницы из SACROBOSCO "Tractatus de Sphaera" с системой Птолемея - 1550 год

Птолемей пытается также обосновать и неподвижность Земли (Альмагест, книга I). Во-первых, если бы Земля смещалась от центра, то наблюдались бы только что описанные эффекты, а раз их нет, Земля всегда находится в центре. Другим доводом является вертикальность траекторий падающих тел. Отсутствие осевого вращения Земли Птолемей обосновывает следующим образом: если бы Земля вращалась, то «...все предметы, не опирающиеся на Землю, должны казаться совершающими такое же движение в обратном направлении; ни облака, ни другие летающие или парящие объекты никогда не будут видимы движущимися на восток, поскольку движение Земли к востоку будет всегда отбрасывать их, так что эти объекты будут казаться движущимися на запад, в обратном направлении». Несостоятельность этого довода стала ясна только после открытия основ механики.

Объяснение астрономических явлений с позиций геоцентризма

Наибольшей трудностью для древнегреческой астрономии являлось неравномерность движения небесных светил (особенно попятные движения планет), поскольку в пифагорейско-платоновской традиции (которой в значительной степени следовал и Аристотель), они считались божествами, которым надлежит совершать только равномерные движения. Для преодоления этой трудности создавались модели, в которых сложные видимые движения планет объяснялись как результат сложений нескольких равномерных движений по окружностям. Конкретным воплощением этого принципа являлись поддержанная Аристотелем теория гомоцентрических сфер Евдокса-Каллиппа и теория эпициклов Аполлония Пергского, Гиппарха и Птолемея. Впрочем, последний был вынужден частично отказаться от принципа равномерных движений, введя модель экванта.

Отказ от геоцентризма

В ходе научной революции XVII века выяснилось, геоцентризм несовместим с астрономическими фактами и противоречит физической теории; постепенно утвердилась гелиоцентрическая система мира. Основными событиями, приведшими к отказу от геоцентрической системы, были создание гелиоцентрической теории планетных движений Коперником, телескопические открытия Галилея, открытие законов Кеплера и, главное, создание классической механики и открытие закона всемирного тяготения Ньютоном.

Геоцентризм и религия

Уже одна из первых идей, оппозиционных геоцентризму (гелиоцентрическая гипотеза Аристарха Самосского) привела к реакции со стороны представителей религиозной философии: стоик Клеанф призвал привлечь Аристарха к суду за то, что он двигает с места «Очаг мира», имея в виду Землю; неизвестно, впрочем, увенчались ли старания Клеанфа успехом. В Средневековье, поскольку христианская церковь учила, что весь мир создан Богом ради человека (см. Антропоцентризм), геоцентризм также успешно адаптировался к христианству. Этому способствовало также буквальное прочтение Библии. Научная революция XVII веке сопровождалась попытками административного запрета гелиоцентрической системы, что привело, в частности, к судебному процессу над сторонником и пропагандистом гелиоцентризма Галилео Галилеем. В настоящее время геоцентризм как религиозная вера встречается среди некоторых консервативных протестантских групп в США.