Строительство и ремонт

Левитирующие горшки с цветком с Алиэкспресс. Отзыв от покупателя с видео

Back Shed

Этот одновременно забавный и поучительный проект демонстрирует магнитную левитацию.

Магнитная левитация

Однажды я увидел устройство, в котором магнит парил в воздухе и, задавшись вопросом, как это сделано, решил проверить некоторые теории. После многих проб и ошибок мне удалось получить то, что вы можете видеть на Рисунке 1.

Основные элементы устройства - катушка, создающая магнитное поле, и установленный на ее торцевой поверхности линейный датчик Холла, необходимый для обнаружения поля постоянного магнита. Под контролем этого датчика при приближении постоянного магнита ток катушки выключается, магнит начинает падать, удаляясь от катушки, и катушка включается опять, эффективно удерживая магнит «подвешенным» в воздухе.

Эмалированным медным проводом сечением 0.45 мм я намотал небольшую катушку (Рисунок 2). Ее размеры и количество витков не столь важны, как электрическое сопротивление, которое должно быть достаточно большим, чтобы ограничить ток, забираемый от источника питания. Я стремился не выйти за пределы 0.5 А при напряжении питания 5 В, для чего сопротивление должно было находиться в диапазоне от 10 до 15 Ом (5 В/0.5 А = 10 Ом).

Однако, поскольку схема теперь доработана таким образом, чтобы в отсутствие магнита ток катушки выключался, ее сопротивление можно снизить, но до значения не менее 5 Ом.

Поскольку собственной мощности катушки недостаточно, ее требуется дополнить металлической пластиной. Я вырезал стальной диск толщиной 5 мм с диаметром, равным внешнему диаметру катушки, хотя диаметр может быть и немного меньше (Рисунок 3).

Магнит левитирует в узком интервале расстояний, в котором сам не способен примагнититься к пластине, и нуждается в небольшой помощи поля катушки, поддерживающей его в «подвешенном» состоянии.

К металлическому диску крепится датчик Холла, плоская сторона которого должна быть обращена в сторону катушки (Рисунки 4, 5).

Для удобства я установил датчик в пластиковый диск (Рисунок 6), который вырезал из акрилового листа, но можно обойтись и просто клеем или двухсторонним скотчем.

Очень важно установить датчик по центру катушки и ее металлического сердечника.

Первоначально я пытался считывать сигнал датчика Холла и управлять катушкой через транзистор с помощью системы PICAXE, выпускаемой фирмой Revolution Education на основе микроконтроллера PIC, но PICAXE оказалась слишком медленной. Тогда я решил воспользоваться операционным усилителем (ОУ) LM358, и это дало желаемый результат.

Конструкция получилась очень простой. Я обнаружил, что когда магнит левитирует, схема, в зависимости от веса объекта, потребляет всего 50…150 мА. Но если магнит убрать, управляющий транзистор полностью открывается, средний ток увеличивается, и стабилизатор 5 В начинает перегреваться.

Поэтому схема была переработана (Рисунок 7). Чтобы отключать катушку при отсутствии магнита, я использовал второй операционный усилитель микросхемы LM358.

Вся схема, включая катушку, питается напряжением 5 В, стабилизированным микросхемой LM7805, максимальный ток которой не должен превышать 0.5 А.

В отсутствие внешнего поля выходное напряжение линейного датчика Холла равно примерно половине напряжения питания 5 В. Если к датчику поднести магнит, выходное напряжение увеличивается или уменьшается, в зависимости от того, каким полюсом магнит направлен к датчику (северным или южным). В этой схеме при приближении магнита напряжение должно повышаться, поэтому подносить магнит к датчику нужно южным полюсом.

Выход датчика подключен к инвертирующему входу первого операционного усилителя (ОУ1), на неинвертирующий вход которого подается напряжение с делителя напряжения R1/R2. Подстроечный резистор R2 используется для уравновешивания в точке левитации разных по размерам и весу магнитов и объектов.

Выход ОУ1 через резистор 1 кОм соединен с базой транзистора BD681, управляющего включением катушки. Здесь подойдет практически любой NPN транзистор или MOSFET с допустимым током не менее 1 А.

Второй операционный усилитель микросхемы (ОУ2) используется для слежения за частотой переключения транзистора Q1. Для этого выходное напряжение ОУ1, эффективно сглаженное RC-фильтром R9/С4 (100 кОм/1 мкФ), подается на неинвертирующий вход ОУ2.

На инвертирующий вход ОУ2 поступает напряжение с делителя R7/R8, в одно плечо которого включен подстроечный резистор. Пока ток катушки, управляемый выходом ОУ1, пульсирует, стремясь удерживать магнит в подвешенном состоянии, аналоговое напряжение на неинвертирующем входе ОУ2 ниже установленного делителем на инвертирующем входе. Но если убрать магнит, напряжение на этом входе увеличится, поскольку ОУ1 будет пытаться вернуть магнит на место, непрерывно открывая транзистор управления током катушки, колебания прекратятся, и выходное напряжение ОУ1 станет постоянно высоким. В результате напряжение на неинвертирующем входе ОУ2 превысит напряжение на инвертирующем, и уровень выходного сигнала переключится на высокий. К выходу ОУ2 через резистор 5.1 кОм подключена база NPN транзистора , коллектор которого соединен с базой транзистора , управляющего током катушки. Шунтируя базовый резистор 1 кОм (R3) на землю, Q2 отключает катушку.

Второй транзистор BC337 (Q3), также подключенный к выходу ОУ2, управляет светодиодами, закорачивая на землю токоограничительный резистор R12, когда их надо погасить.

Установка точки отключения катушки легко выполняется вращением движка подстроечного резистора R8 до положения, в котором светодиоды погаснут. Если внести магнит в зону чувствительности датчика, светодиоды зажгутся вновь, ток катушки начнет пульсировать, и далее лишь останется с помощью подстроечного резистора R2 найти точку равновесия магнита.

Теперь, после того, как все ошибки схемы были устранены, имея несколько простых компонентов, ее очень легко повторить.

Конструкция печатной платы представлена на Рисунках 8 и 9. Площадки, помеченные «TP», служили тестовыми точками, в которые в процессе отладки я запаивал штырьки для подключения приборов. При повторении схемы их можно не устанавливать.

Выводы катушки должны быть подключены так, чтобы создавать магнитное поле нужного направления. Проверить правильность их присоединения очень просто: если схема не работает, поменяйте местами провода.

Размеры магнита не слишком важны, но он должен быть достаточно сильным. Хорошо подойдет редкоземельный магнит, например, неодимовый.

Во избежание перегрева стабилизатора напряжения, обязательно установите его на радиатор. Выберите источник питания с напряжением 7 … 12 В, поскольку чем выше входное напряжение, тем больше нагревается стабилизатор напряжения 5 В.

Максимально допустимое входное напряжение датчика Холла равно 6 В, поэтому для питания схемы выбрано напряжение 5 В.

Если ваш магнит сильно вибрирует, или вообще не хочет левитировать, это может быть вызвано несколькими причинами, главной из которых является недостаточная толщина металлической пластины на катушке. Попробуйте добавить к ней еще несколько шайб. Возможно также, что датчик Холла смещен относительно центра катушки, или же зазор, установленный между катушкой и магнитом, слишком мал, и магнит нужно немного опустить регулировкой подстроечного резистора R2. (Это очень тонкая настройка). А может быть, катушка перекошена и установлена не вертикально.

Добавление мигающих RGB светодиодов сверху и снизу магнита создаст приятный эффект, если вы заставите левитировать какой-либо блестящий объект, такой, например, как шарик из алюминиевой фольги (Рисунки 10 и 11). Поскольку верхний светодиод находится ближе к объекту, желательно расширить угол его излучения, спилив линзу напильником.

Совсем другой эффект можно получить, изготовив небольшой пропеллер с прикрепленным в его центре магнитом. Я вырезал его из банки от Кока-Колы. Затем поместите под пропеллером плоскую свечку-таблетку или ароматическую масляную горелку, и поднимающийся поток теплого воздуха заставит левитирующий пропеллер вращаться. Для вращения пропеллера требуется совсем небольшая разница температур, и если воздух в помещении холодный, будет вполне достаточно тепла, выделяемого катушкой. Конечно же, если воздух теплый, это работать не будет.

В устройстве можно использовать катушку от ненужного соленоида, но предварительно необходимо убедиться в том, что потребляемый ею ток не перегрузит схему, поскольку многие соленоиды очень прожорливы.

На идею этого урока натолкнул проект краудфандинговой платформы Kickstarter под названием "Air Bonsai", действительно красивый и загадочный, который сделали японцы.

Но любая загадка может быть объяснена, если посмотреть внутрь. Фактически это магнитная левитация, когда есть объект, левитирующий сверху, и электромагнит, контролируемый схемой. Давайте попробуем вместе реализовать этот загадочный проект.

Мы выяснили, что схема устройства на Кикстартере была довольно сложной, без какого-либо микроконтроллера. Не было возможности найти её аналоговую схему. На самом деле, если посмотреть более внимательно, принцип левитации довольно прост. Нужно сделать магнитную деталь, "плавающую" над другой магнитной деталью. Основная дальнейшая работа заключалась в том, чтобы левитирующий магнит не падал.

Было также предположение, что сделать это с Arduino на самом деле намного проще, чем пытаться понять схему японского устройства. На самом деле всё оказалось намного проще.

Магнитная левитация состоит из двух частей: базовой части и плавающей (левитирующей) части.

Основание

Эта часть находится внизу, которая состоит из магнита для создания круглого магнитного поля и электромагнитов для управления этим магнитным полем.

Каждый магнит имеет два полюса: север и юг. Эксперименты показывают, что противоположности притягиваются и одинаковые полюса отталкиваются. Четыре цилиндрических магнита помещаются в квадрат и имеют одинаковую полярность, образуя круглое магнитное поле вверх, чтобы вытолкнуть любой магнит, который имеет один и тот же полюс между ними.

Есть четыре электромагнита вообще, они помещены в квадрат, два симметричных магнита - пара, и их магнитное поле всегда противоположно. Датчик Холла и цепь управляют электромагнитами. Создаем противоположные полюса на электромагнитах током через них.

Плавающая деталь

Деталь включает в себя магнит, плавающий над основанием, который может нести небольшой горшок с растением или другие предметы.

Магнит сверху поднимается магнитным полем нижних магнитов, потому что они с одинаковыми полюсами. Однако, как правило, он склоняется к падению и притягиванию друг к другу. Чтобы предотвратить переворот и падение верхней части магнита, электромагниты создадут магнитные поля, чтобы толкать или тянуть, дабы сбалансировать плавающую часть, благодаря датчику Холла. Электромагниты управляются двумя осями X и Y, в результате чего верхний магнит поддерживается сбалансированным и плавающим.

Контролировать электромагниты нелегко, требуется ПИД-регулятор, который подробно обсуждается на следующем шаге.

Шаг 2: ПИД-регулятор (PID)

Из Википедии: "Пропорционально-интегрально-дифференцирующий (ПИД) регулятор - устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе - интеграл сигнала рассогласования, третье - производная сигнала рассогласования."

В простом понимании: «ПИД-регулятор вычисляет значение «ошибки» как разность между измеренным [Входом] и желаемой установкой. Контроллер пытается свести к минимуму ошибку, отрегулировав [выход]».

Итак, вы указываете PID, что измерить (Вход), какое значение вы хотите и переменную, которая поможет иметь это значение на выходе. Далее ПИД-регулятор настраивает выходной сигнал, чтобы сделать вход равным установке.

Для примера : в автомобиле у нас три значения (Вход, Установка, выход) будут - скорость, желаемая скорость и угол педали газа, соответственно.

В данном проекте:

  1. Вход представляет собой текущее значение в реальном времени от датчика холла, которое обновляется непрерывно, поскольку положение плавающего магнита будет меняться в реальном времени.
  2. Заданное значение - это значение от датчика холла, которое измеряется, когда плавающий магнит находится в положении баланса, в центре основания магнитов. Этот индекс фиксирован и со временем не изменяется.
  3. Выходной сигнал - скорость для управления электромагнитами.

Стоит поблагодарить сообщество любителей Arduino, которое написало PID-библиотеку и которая очень проста в использовании. Дополнительная информация об Arduino PID есть на официальном сайте Arduino . Нам нужно использовать пару ПИД-регуляторов под Arduino, один для оси X и другой для оси Y.

Шаг 3: Комплектующие

Список комплектующих для урока получается приличным. Ниже приведен список компонентов, которые вы должны купить для этого проекта, убедитесь, что у вас есть все перед запуском. Некоторые из компонентов очень популярны, и, вероятно, вы найдете их на своем собственном складе или дома.


Шаг 4: Инструменты

Вот список инструментов, наиболее часто используемых:

  • Паяльник
  • Ручная пила
  • Мультиметр
  • Дрель
  • Осциллограф (по желанию, можете использовать мультиметр)
  • Настольное сверло
  • Горячий клей
  • Плоскогубцы

Шаг 5: LM324 Op-amp, L298N драйвер и SS495a

LM324 Op-amp

Операционные усилители (op-amp) являются одними из наиболее важных, широко используемых и универсальных схем, используемых сегодня.

Мы используем операционный усилитель для усиления сигнала от датчика Холла, цель которого - увеличить чувствительность, чтобы ардуино легко распознало изменение магнитного поля. Изменение нескольких мВ на выходе датчика холла, после прохождения усилителя может измениться на несколько сотен единиц в Arduino. Это необходимо для обеспечения плавного и стабильного функционирования ПИД-регулятора.

Обычным операционным усилителем, который мы выбрали, является LM324, это дешево, и вы можете купить его в любом магазине электроники. LM324 имеет 4 внутренних усилителя, которые позволяют гибко его использовать, однако в этом проекте нужны только два усилителя: один для оси X, а другой для оси Y.

Модуль L298N

Двойной H-мост L298N обычно используется для управления скоростью и направлением двух двигателей постоянного тока или с легкостью управляет одним биполярным шаговым двигателем. L298N может использоваться с двигателями с напряжением от 5 до 35 В постоянного тока.

Существует также встроенный регулятор 5V, поэтому, если напряжение питания до 12 В, вы также можете подключить источник питания 5 В от платы.

В этом проекте использован L298N для управления двумя парами катушек электромагнита и использован выход 5 В для питания Arduino и датчика холла.

Распиновка модулей:

  • Out 2: пара электромагнитов X
  • Out 3: пара электромагнитов Y
  • Входное питание: вход постоянного тока 12 В
  • GND: Земля
  • Выход 5v: 5v для датчиков Arduino и холла
  • EnA: Включает сигнал PWM для выхода 2
  • In1: Включить для выхода 2
  • In2: Enable for Out 2
  • In3: Включить для выхода 3
  • In4: Включить для выхода 3
  • EnB: Включает PWM-сигнал для Out3

Подключение к Arduino: нам нужно удалить 2 перемычки в контактах EnA и EnB, затем подключить 6 контактов In1, In2, In3, In4, EnA, EnB к Arduino.

SS495a Датчик Холла

SS495a - это линейный датчик Холла с аналоговым выходом. Обратите внимание на разницу между аналоговым выходом и цифровым выходом, вы не можете использовать датчик с цифровым выходом в этом проекте, он имеет только два состояния 1 или 0, поэтому вы не можете измерить выход магнитных полей.

Аналоговый датчик приведет к диапазону напряжений от 250 до Vcc, который вы можете прочитать с помощью аналогового входа Arduino. Для измерения магнитного поля в обеих осях X и Y требуются два датчика холла.

Шаг 6: Неодимовые магниты NdFeB (неодим-железо-бор)

Из Википедии: "Неодим - химический элемент, редкоземельный металл серебристо-белого цвета с золотистым оттенком. Относится к группе лантаноидов. Легко окисляется на воздухе. Открыт в 1885 году австрийским химиком Карлом Ауэром фон Вельсбахом. Используется как компонент сплавов с алюминием и магнием для самолёто- и ракетостроения."

Неодим - это металл, который является ферромагнитным (в частности, он показывает антиферромагнитные свойства), что означает, что подобно железу его можно намагнитить, чтобы он стал магнитом. Но его температура Кюри составляет 19К (-254 ° С), поэтому в чистом виде его магнетизм проявляется только при чрезвычайно низких температурах. Однако соединения неодима с переходными металлами, такими как железо, могут иметь температуры Кюри значительно выше комнатной температуры, и они используются для изготовления неодимовых магнитов.

Сильный - это слово, которое используют для описания неодимового магнита. Вы не можете использовать ферритовые магниты, потому что их магнетизм слишком слаб. Неодимовые магниты намного дороже ферритовых магнитов. Маленькие магниты используются для основы, большие магниты для плавающей/левитирующей части.

Внимание ! Вам нужно быть осторожным при использовании неодимовых магнитов, так как их сильный магнетизм может навредить вам, или они могут сломать данные вашего жесткого диска или других электронных устройств, на которые влияют магнитные поля.

Совет ! Вы можете отделить два магнита, потянув их в горизонтальное положение, вы не сможете отделить их в противоположном направлении, потому что их магнитное поле слишком сильное. Они также очень хрупкие и легко ломаются.

Шаг 7: Готовим основание

Использовали небольшой терракотовый горшок, который обычно используется для выращивания суккулента или кактуса. Вы также можете использовать керамический горшок или деревянный горшок, если они подходят. Используйте сверло диаметром 8 мм, чтобы создать отверстие в нижней части горшка, которое используется для удерживания гнезда постоянного тока.

Шаг 8: 3D-печать плавающей части

Если у вас есть 3D-принтер - здорово. У вас есть возможность сделать все с помощью него. Если принтера нет - не отчаивайтесь, т.к. вы можете использовать дешевую услугу 3D-печати, которая сейчас очень популярна.

Для лазерной резки файлы также в архиве выше - файл AcrylicLaserCut.dwg (это autocad). Акриловая деталь используется для поддержки магнитов и электромагнитов, остальные - для покрытия поверхности терракотового горшка.

Шаг 9: Подготовка SS495a модуля датчика Холла

Вырежьте макет PCB на две части, одну часть, чтобы прикрепить датчик холла, а другой - к цепи LM324. Прикрепите два магнитных датчика перпендикулярно печатной плате. Используйте тонкие провода для соединения двух штырей датчиков VCC вместе, сделайте то же самое с контактами GND. Выходные контакты отдельно.

Шаг 10: Цепь Op-amp

Припаяйте гнездо и резисторы к печатной плате, следуя схеме, обратив внимание на то, чтобы поместить два потенциометра в одном направлении для более легкой калибровки позже. Присоедините LM324 к гнезду, затем подключите два выхода модуля датчиков холла к цепи op-amp.

Два выходных провода LM324 подключите к Arduino. Вход 12 В с входом 12 В модуля L298N, выход 5 В модуля L298N к 5V потенциометра.

Шаг 11: Сборка электромагнитов

Соберите электромагниты на акриловый лист, они закреплены в четырех отверстиях вблизи центра. Затяните винты, чтобы избежать движения. Поскольку электромагниты симметричны по центру, они всегда находятся на полюсах напротив, так что провода на внутренней стороне электромагнитов соединены вместе, а провода на внешней стороне электромагнитов подключены к L298N.

Протяните провода под акриловым листом через соседние отверстия, чтобы подключиться к L298N. Медный провод покрыт изолированным слоем, поэтому вы должны удалить его ножом, прежде чем вы сможете припаять их вместе.

Шаг 12: Сенсорный модуль и магниты

Используйте горячий клей для фиксации модуля датчика между электромагнитами, обратите внимание, что каждый датчик должен быть квадратным с двумя электромагнитами, один на передней и другой на задней панели. Попробуйте выполнить калибровку двух датчиков как можно более централизованно, чтобы они не перекрывались, что сделает датчик наиболее эффективным.

Следующий шаг - собрать магниты на акриловой основе. Объединяя два магнита D15*4 мм и магнит D15*3 мм вместе, чтобы сформировать цилиндр, это приведет к тому, что магниты и электромагниты будут иметь одинаковую высоту. Соберите магниты между парами электромагнитов, обратите внимание, что полюса восходящих магнитов должны быть одинаковыми.

Шаг 13: Разъем питания постоянного тока и выход L298N 5V

Припаяйте гнездо питания постоянного тока двумя проводами и используйте термоусадочную трубку. Подключенный разъем питания постоянного тока к входу модуля L298N, его выход 5 В будет подавать питание на Arduino.

Шаг 14: L298N и Arduino

Подключите модуль L298N к Arduino, следуя приведенной выше схеме:

L298N → Ардуино
5V → VCC
GND → GND
EnA → 7
В1 → 6
В2 → 5
В3 → 4
В4 → 3
EnB → 2

Шаг 15: Arduino Pro Mini программер

Поскольку у Arduino pro mini нет USB-порта для последовательного порта, вам необходимо подключить внешний программатор. FTDI Basic будет использоваться для программирования (и питания) Pro Mini.

Идея устройства очень проста, электромагнит поднимает в воздух магнит, а для создания эффекта левитации в магнитном поле, он подключен к высокочастотному источнику, который то поднимает, то опускает объект.

Шаг 1: Схема устройства


Схема на удивление проста и я полагаю, что у вас не составит труда собрать левитрон своими руками. Вот список компонентов:

  • светодиод (любого цвета — это опционально)
  • транзистор Irfz44n (или любой подходящий mosfet)
  • диод HER207 (с таким же успехом должен работать 1n4007)
  • резисторы 1k и 330Om (последний необязателен)
  • датчик Холла A3144 (либо аналогичный)
  • медный обмоточный провод диаметром 0.3 — 0.4 мм и длиной 20 м
  • неодимовые магниты (я использовал 5 * 1 мм)

Шаг 2: Сборка


Приступим к сборке. Сперва нам нужно сделать рамку для электромагнита примерно таких размеров: диаметр 6 мм, высота мотка примерно 23 мм, и диаметр ушек около 25 мм. Как видите, изготовить её можно из обычного листа, картона и суперклея. теперь закрепим начало мотка на рамке и расслабимся — нам нужно будет сделать около 550 оборотов, неважно в каком набавлении. Я сделал 12 слоёв, что отняло у меня 1.5 часа.

Шаг 3: Спайка




Спаиваем всё по схеме, без каких-либо нюансов. Датчик Холла припаян к проводам, т.к. он будет помещён в катушку. Когда всё спаяете, поместите датчик в катушку, закрепите его, подвесьте катушку и подайте ток. Поднеся магнит, вы почувствуете, что он притягивается или отталкивается, в зависимости от полюса, и пытается зависнуть в воздухе, но неудачно.

Шаг 4: Настройка




После 30 минут, потраченных над разгадкой вопроса, «почему эта штука не работает?», я пришел в отчаяние и прибегнул к крайним мерам — начал читать спецификацию к датчику, которую создают для таких людей как я. В спецификации имелись картинки, на которых было изображено, какая из сторон чувствительная.

Вытащив датчик и согнув его таким образом, чтобы плоская сторона с надписями была параллельна земле, я вернул его на место — самодельное устройство стало работать заметно лучше, но магнит всё ещё не левитировал. Понять в чём проблема удалось достаточно быстро: магнит в форме таблетки — не самый лучший экземпляр для левитации. Было достаточно сместить центр тяжести к нижней части магнита (я сделал это при помощи куска толстой бумаги). Кстати, не забудьте проверить, какая сторона магнита притягивается к катушке. Теперь всё работало более или менее нормально и осталось закрепить и защитить датчик.

Какие еще нюансы есть в этом проекте? Сначала я хотел использовать адаптер на 12V, но электромагнит быстро грелся, и мне пришлось переключить его на 5V, я не заметил никаких ухудшений в работе, а нагрев был практически устранён. Диод и ограничивающий резистор были практически сразу отключены. Также я снял с катушки синюю бумагу — мотки медной проволоки смотрятся гораздо красивее.

Шаг 5: Финал

Сегодня технический прогресс достиг такого уровня, что позволил ученым подойти близко к решению вопроса создания пути поездов на магнитных подвесных элементах. Они будут ездить, не контактируя с металлическими путями, а на не котором расстоянии от них. Весь «фокус» построен на магнитной в воздухе левитации, позволяющей поезду как будто парить в пространстве.

Научная трактовка

Многие считают, что левитация в магнитном поле представляет собой свободный путь магнита, брошенного в пространстве. На самом деле этот физический процесс заключается в преодолении сил гравитации предметом, находящимся под воздействием магнита. На него оказывается магнитное давление магнитного поля. На обычном языке под магнитной в пространстве левитацией надо понимать, что если на лежащий предмет действует гравитационное давление сверху вниз, то можно создать обратную силу, способную нейтрализовать притяжение. То есть предмет левитирует в воздухе.

Для того чтобы лучше понимать магнитную в воздухе левитацию, нужно вспомнить школьную программу физики. Если взять два магнита и приблизить их друг к другу северными полюсами, то они будут отталкиваться. Когда приблизить северный полюс к южной стороне, то магниты будут притягиваться. Первый опыт позволяет левитировать в пространстве предметам с огромным весом.

Понятие о диамагнитной левитации

В физике диамагнитная левитация – это нейтрализация магнитного давления магнитного поля из любого предмета или объекта. Из многих опытов, сделанных своими руками, становится видно, что диамагнетизм делает предметы невесомыми в пространстве. Тем более, такой процесс может происходить в среде с разной температурой и с объектами, имеющими разный вес.

Примером этому может быть опыт с левитирующей в воздухе лягушкой. Животное поместили в созданное магнитное поле, имеющее индукцию более 16 Тесла, и все увидели парящую лягушку.

Кроме этого можно создать магнитное поле с индукцией 11 Тесла и поместить в созданное поле руки. За счет этого магнит начнет парить в воздухе. Тем более, полетом магнита просто управлять. Как сделать такой фокус? Нужно легко касаться магнита рукой, и он постоянно будет между руками. Пальцы будут являться диамагнетиками.

На службе у человека

На практике магнитную в воздухе левитацию с человеком доказали уже ученые. На сегодняшней повестке стоит задача применения процесса с техническими средствами, состоящими на службе цивилизации.

Летающие поезда

В научных разработках такие поезда называют маглевы (первая часть слова – магнитная, вторая часть – левитация). Сегодня они вполне удачно работают по перевозке пассажиров в Японии. Но и там они из-за значительных финансовых вложений занимают малый процент среди общего железнодорожного парка.

Важно знать! Такой железнодорожный транспорт передвигается с помощью магнитного поля, создаваемого мощными магнитными элементами, которые смонтированы под железнодорожным полотном.

Поезда такого принципа действия способны развивать большую скорость, за счет исключения силы трения. То есть за счет магнитной в воздухе левитации они не контактируют с металлическими рейками.

Механика без износа

Вторым направлением применения этого явления является механика. Многие специалисты знают о короткой эксплуатации шариковых подшипников в механических узлах, приводящей к серьезным авариям и длительным простоям производственных линий.

Сегодня на практике эта проблема решается с помощью магнитного поля. Учеными были разработаны магнитные подшипники. Особенно их применяют в труднодоступных для ремонта местах.

Кроме этого магнитные подшипники применяются в узлах вертикальных ветровых генераторов. Это дает возможность превращать энергию ветра в электроэнергию без дорогостоящего технического обслуживания и простоя.

В итоге нужно отметить, что многие процессы, описанные ранее человеком в произведениях фантастического жанра, воплощаются в реальность. Человеческому разуму скоро удастся воплотить в жизнь задумки с плазменными окнами, лазерными шторами и углеродными компьютерами.

Видео

Рано или поздно даже самые экзотические комнатные растения начинают приедаться, и душа требует чего-то нового, экстравагантного. Если позволяет бюджет, можно порадовать себя и удивить гостей новинкой – левитирующим горшком для растений.

Принцип действия летающего цветочного горшка

Поклонники мистики знают, что предметы и люди могут левитировать (парить над землей) если в них вселились потусторонние силы. Ведь левитация – это преодоление притяжения Земли, состояние легкости и невесомости, а также передвижение в пространстве. Однако, это лишь домыслы.

Наука этот феномен взяла на вооружение и в 2016 году японская компания выпустила оригинальный летающий горшок для цветов в виде бонсай. О принципе его действия простому обывателю догадаться невозможно – настолько завораживает это зрелище, ведь это вовсе не обман зрения, а реальность.

Внимательно присмотревшись к устройству можно заметить, что красивая деревянная /каменная подставка, над которой в невесомости парит горшочек с растением, подсоединена к электросети. Внутри этой подставки имеется мощный магнит, который взаимодействует с магнитом, скрытым в нижней части горшочка. Таким образом, горшок на магнитной подушке висит в воздухе и даже крутится вокруг своей оси.

Где купить магнитные горшки для цветов?

Приобрести левитирующие горшочки можно у российских представителей компании-производителя. Найти посредников можно в сети Интернет, а вот в розничной продаже их не найти, так как выпуск пока что лимитированный.

Стоимость и характеристики чудо-горшочка

Позволить себе приобрести новинку сможет не каждый, ведь цена на магнитный горшочек варьируется от 100 до 350 долларов США, в зависимости от модификации. Бонсай стоит дороже всего, а белый пластиковый двенадцатигранный горшочек стоит от 100$.

И горшок и подставка имеют вес около 1 кг 700 гр, и большую часть веса приходится именно на магнитную подставку. Пластиковый горшочек выпускается в белом цвете, а для расписан экзотическими иероглифами.