Строительство и ремонт

Как правильно рассчитать железобетонное перекрытие. Армирование плит перекрытия

Наиболее используемым перекрытием при строительстве индивидуальных малоэтажных строений являются железобетонные изделия с пустотной структурой. Однако для их монтажа необходима подъемная техника, что сказывается на общей стоимости работ. К тому же готовые платформы применяются для домов с простыми формами.

Некоторые застройщики предпочитают выполнять своими силами перекрытия из армированного бетона. Такой способ оптимально подходит для объектов с неправильной геометрией. Что, в свою очередь, позволяет отойти от стандартов и возводить сложные в плане архитектуры строения.

Армирование плиты перекрытия фото



Преимущества армирования плиты перекрытия

Армированная платформа, выполненная с учетом технологических тонкостей, прослужит не один десяток лет. При заливке получаются ровные (без швов) потолки и такие же полы, которые не нуждаются в дорогостоящих и трудоемких работах по внутренней отделке.

Среди преимуществ можно отметить:

  • вес. Такая конструкция весит заметно ниже по сравнению с готовыми железобетонными плитами, однако, на ее прочность данный фактор не влияет. Зато позволяет снизить нагрузку на фундамент и использовать более легкие строительные материалы;
  • прочность. Удивительный тандем таких разных материалов, как бетон и железо создает надежное основание. Платформа находит свое применение для перекрытия большепролетных и сильно нагруженных конструкций;
  • надежность. Бетонные конструкции обладают высокой устойчивостью к разнонаправленным нагрузкам за счет применения арматуры. Они выдерживают нагрузки от 500 до 800 кг на квадратный метр;
  • огнестойкость. Применяемые материалы сами по себе негорючие. Монолитная плита не поддерживает горение и способна выдержать воздействие открытого пламени длительное время;
  • стоимость. Затраты на перекрытие однозначно не превысит стоимость заводского изделия. Окончательную цену определяет обустраиваемая площадь.

Что представляет собой армирование плиты перекрытия

  • Применение данной технологии дает более широкие возможности в плане планировки внутренних помещений. При этом платформа получается очень прочной. Она без труда выдерживает высокие нагрузки, не подвержена горению и не способствует развитию насекомых, грибков и других болезнетворных бактерий.


  • Работы проводятся по определенным правилам. Строительные материалы приобретаются от известных поставщиков, потому как наличие брака недопустимо. Только придерживаясь технологии можно говорить о соответствующей расчетной прочности готовой платформы. В противном случае перекрытие может деформироваться и привести к разрушению не только межэтажной плиты, но и всей постройки.
  • Заливка перекрытий осуществляется посредством съемной опалубки, в которой располагают рабочую арматуру. Металлические стержни связываются между собой вязальной проволокой или соединяются сварочным аппаратом.
  • Жесткий металлический каркас располагают таким образом, чтобы он оказался полностью утопленным в бетонной массе. Таким образом, арматура максимально примет всю нагрузку на себя, а раствор, в свою очередь, предотвратит поступление кислорода пагубно влияющего на металл.


При составлении схемы армирования плиты перекрытия учитывается монтаж вспомогательной арматуры для усиления участков:

  • в центре будущей платформы;
  • касания монолита с колоннами, внутренними стенами, арками и т.д.;
  • где происходит сосредоточение нагрузок (при установке камина, тяжелого оборудования и пр.);
  • соприкосновения перекрытия с отверстиями (выход для лестницы на верхний этаж, проход для вентиляционных или дымоотводных труб и других систем).
  • Расчет толщины армирования перекрытия зависит от его длины. Если расстояние между несущими опорами равно 5 м, то толщина бетонной платформы должна составлять 170 мм. То есть при вычислениях используется соотношение 1/30. Однако конструкция толщиной менее 150 мм не допускается к эксплуатации.

Армирование плиты перекрытия чертеж


  • При минимальной толщине перекрытия металлические элементы укладываются в один слой. Если этот параметр больше, тогда в два.
  • Для раствора используется бетон М200 (не ниже). Такая марка сочетает в себе хорошие характеристики и доступную цену. Класс прочности на сжатие составляет 150 кгс/см.кв.
  • Диаметр стальных прутьев варьируется от 8 до 14 мм. При двухслойном расположении металлических стержней диаметр металлопроката нижнего ряда должен быть больше верхнего. Здесь можно использовать сетку в заводском исполнении с ячейками 150х150 мм или 200х200 мм.


  • Опалубка сооружается из досок и/или влагостойкой фанеры. Подпорки надежно закрепляются, ведь вес заливаемой конструкции может достигать 300 кг на кв.м. В качестве опорных элементов лучше использовать телескопические стойки-домкраты, позволяющие устанавливать необходимую высоту с высокой точностью. Каждая опора способна выдержать нагрузку до 2-2,5 кг.

Армирование плиты перекрытия своими руками

Опалубка

  • Эта конструкция является съемной, поэтому рекомендуется применять те материалы, которые могут использоваться в дальнейшем. Здесь подойдут обрезные доски 150х25 мм. Однако они не обеспечат идеально ровную поверхность будущего потолка, так как в толщине данного пиломатериала допускается некая погрешность. Все неровности легко будет скрыть под штукатурным слоем, тем более, если планируется монтаж подвесных потолков.
  • В случаях, когда принципиально важно наличие ровной поверхности, тогда вместо досок используют ламинированную фанеру толщиной 22 мм. Но такая опалубка обойдется в приличную сумму. Намного экономнее выйдет следующий вариант: в качестве основы выступают те же обрезные доски, а поверх них укладывается фанера толщиной 8-10 мм.
  • Опалубку обустраивают посредством досок (150х50 мм), которые крепятся по периметру помещения. Поперечные бруски монтируются с шагом 600-800 мм, именно под них устанавливаются строго по уровню вертикальные подпорки или телескопические стойки.


  • Поверх каркаса плотно выкладываются доски размерами 150х25 мм. Крепить к основе или друг к другу не нужно, иначе по окончанию работ (после заливки и высыхания бетона) при разборке опалубки возникнут большие трудности. При необходимости сверху досок настилаются листы фанеры.
  • Чтобы материал, используемый для опалубки, можно было задействовать в других целях, конструкцию застилают плотной полиэтиленовой пленкой. Полотна укладываются внахлест (не менее 200 мм) только на основу опалубки без захода на торцы, при работах важно не допускать замятий материала.
  • Если плита будет служить настилом под кровлю, тогда вместо боковых досок лучше выложить борта из кирпича или ячеистых блоков высотой соответствующей толщине слоя бетона.

После изготовления плиты опалубка демонтируется, а не ломается. В связи с чем все крепежные элементы должны располагаться с внешней стороны конструкции.

Арматура

  • Для формирования плиты для небольших пролетов можно связать сетку собственноручно. Желательно укладывать стержни по длине без разрывов. Если возникает необходимость в подвязке, то металлические элементы монтируются внахлест не менее полуметра.
  • Точки пересечения перпендикулярно расположенных стержней скрепляются посредством проволоки или сварочного аппарата. Точечная сварка актуальна при использовании арматуры большого диаметра. Тонкие прутья в процессе сварки истончаются, что приводит к уменьшению прочности металла, а значит, и к потере несущих способностей готовой плиты.
  • Для вязки можно применить специальный крючок. Однако здесь потребуются определенные навыки, к тому же скрутки из проволоки все равно придется подкручивать. Поэтому в рамках строительства частного дома можно обойтись обычными пассатижами.
  • Готовые металлические карты способны значительно облегчить процесс. Их укладка осуществляется внахлест - как минимум на 2 ячейки, то есть получаются те же 400 мм. В обязательном порядке их фиксируют друг к другу посредством проволоки.
  • Металлический каркас не должен лежать непосредственно на дне опалубки. Его устанавливают на камни, битую плитку толщиной не менее 40-50 мм. Если проектная толщина железобетонной плиты составляет более 150 мм, то таким же методом вяжется еще одна решетка. Второй армирующий слой должен находиться на расстоянии от первого, но при этом сверху полностью перекрываться бетонным раствором.
  • Места с повышенной нагрузкой усиливаются дополнительными прутьями. Загиб арматуры выполнять следует механическим способом. Нагрев металла меняет его структуру, что приводит к потере пластичности, и как следствие - растрескиванию заготовки.


  • Скрутки из вязальной проволоки заготавливаются довольно простым способом. Бухта предварительно скрепляется скотчем в 3-5 равноудаленных точках, расстояние между которыми должно соответствовать удобной длине для скручивания. Посредством болгарки бухта разрезается по отмеченным скотчем участкам.

Бетонный раствор

  • Значительно облегчает процесс заливки опалубки специальная техника. На заводе в бетонный раствор добавляются пластификаторы, гидрофобизаторы и другие добавки, которые улучшают физико-технические характеристики готового раствора.
  • Однако не всегда есть место для заезда бетономешалки, да и заказывать ее для небольшой площади нецелесообразно. Поэтому в некоторых случаях приходится производить замес раствора ручным способом. Плита должна заливаться в один прием, здесь понадобиться помощь 2-3 человек.
  • Для замеса на одну часть бетона берется: 3 части просеянного песка; 5 частей щебня или гравия; воды 20% от общего объема сыпучих компонентов.
  • Сначала перемешиваются все сухие составляющие, затем добавляется необходимый объем воды. Ручным способом это сделать проблематично, поэтому здесь применяют бетономешалку, которая берется у соседей по участку или арендуется у строительных фирм.
  • После замеса раствор используется сразу. Подсохшую смесь нельзя разбавлять водой, к сожалению ее придется выбросить. Поэтому важно провести все подготовительные работы в нужном объеме и непосредственно перед заливкой произвести замес бетонного раствора.


  • В процессе заливки обязательно используют вибратор. Если таковой отсутствует, то можно обойтись равномерным постукиванием молотка по открытой сетке и деревянным элементам опалубки.
  • Затвердевая, бетонная масса усаживается, при быстром процессе в плите могут образоваться микротрещины. Во избежание их появление поверхность регулярно увлажняют и закрывают полиэтиленовой пленкой, которая замедляет испарение влаги. Смачивание осуществляется посредством не прямой струи, а разбрызгиванием.
  • Своей прочности бетон достигнет через 4 недели. Чтобы убедиться в полном высыхании плиты на небольшой участок выкладывают кусок рубероида и оставляют на сутки. Темное пятно под листом гидроизоляционного материала говорит о том, что плита не просохла, а значит не готова к эксплуатации.

Следуя простым правилам и используя качественные материалы можно добиться потрясающих результатов даже начинающему строителю. Такое перекрытия для частного дома, гаража или иной постройки - оптимальный вариант. Особенно если нет подъезда к строящемуся объекту для спецтехники. Тем более армированное перекрытие предоставляет больше возможностей, чем готовые ЖБИ. Заводские изделия стандартных размеров используют для сооружений, в основе которых лежат прямые углы. А данная технология идеально подходит в тех случаях, когда хочется уйти от типовых решений и построить дом без привязки к квадратным или прямоугольным формам.

Армирование плиты перекрытия видео

  • Преимущества армирования плит
  • Возможные разновидности
  • Схема армирования плиты перекрытия
  • Армирование многопролетных балочных плит
  • Армирование монолитных безбалочных перекрытий

Преимущества армирования плит

– очень важная деталь многих сооружений. Они используются в покрытиях общественных построек и жилых помещений со стенами из крупных блоков, кирпича и ячеистобетонных блоков. Плиты перекрытий применяются в зданиях, где влажность воздуха не достигает 60%, и для общественных построек с влажностью до 75%, где обязательно используется пароизоляция. Глубина опирания их на стены должна быть не менее 80 мм. Армирование плит перекрытия имеет несколько существенных преимуществ. Во-первых, нет необходимости использовать строительную технику. Во-вторых, этот способ позволяет делать для помещений перекрытия с нестандартными размерами и любой сложности. Опорами для таких перекрытий могут быть не только стены, но и различные колонны, что делает планировку дома более свободной. В-третьих, такая конструкция очень прочна, намного прочнее, чем деревянные перекрытия. Армированные перекрытия огнеустойчивы и могут переносить высокие напряжения. Например, деревянные перекрытия действие огня могут выдержать только 25 минут, а монолитное – около часа.

Армированные плиты перекрытия используются в покрытиях общественных построек и жилых помещений со стенами из крупных блоков, кирпича и ячеистобетонных блоков.

Они позволяют добиться утепления постройки и повысить звукоизоляцию. Небольшой вес бетонных перемычек и армированных плит позволяет снизить нагрузку на фундамент и стены, в результате можно получить дополнительный экономический эффект от строительства.

Монолитные плиты нужны для качественного армирования.

При монтаже такого перекрытия очень важно сделать правильный расчет. Толщину нужно высчитать в соотношении с толщиной пролета и принять 1:30. Например, если толщина между пролетами равна 6 м, то толщина монолитной плиты по соотношению 1:30 будет равняться 0,2 м. Если уменьшить толщину бетона, то автоматически повышается расход металлопроката, при увеличении толщины увеличивается и расход бетона.

Для создания качественного армирования нужны:

  • монолитные плиты;
  • сетка армировочная стеклотканевая;
  • вязаная арматура.

Вернуться к оглавлению

Возможные разновидности

Бетонные армированные плиты имеют специальную маркировку, на которую стоит обратить внимание. Маркировка состоит из букв и цифр. Буквы в маркировке означают тип плиты. Например, ПНО – плиты настила облегченные, ПК – плиты перекрытия, НВ – настил внутренний. Далее идут цифры, которые означают размеры – длину и ширину. Самая последняя цифра означает допустимые нагрузки, т.е. 100 кг на 1 кв.м. Например, цифра 6 в конце маркировки предупреждает о том, что допустимые нагрузки на изделие составляют 600 кг на 1 кв.м.

Бетонные армированные плиты имеют специальную маркировку (В15, В20).

Кроме того, при выборе следует учесть, что они еще различаются по структуре. В зависимости от поперечного сечения плиты делятся на 3 вида: пустотные, ребристые и сплошные. Самыми популярными являются пустотные плиты. Они обладают небольшим весом, что позволяет их свободно перевозить и устанавливать. Пустоты бывают самой разной формы: круглые, овальные, вертикальные. Такие плиты изготавливают из тяжелого бетона. Класс бетона В15, В20. Марка по морозостойкости F50. В качестве продольной арматуры применяется сталь АIIIв. изготавливаются по ГОСТ 9561-91.

Благодаря такому разнообразию, армированные плиты можно выбрать в зависимости от предназначения, климата и природных особенностей местности. В случае применения плит только в качестве пола стоит использовать армирование ребристых плит, и ребра должны находиться только с одной стороны.

Вернуться к оглавлению

Схема армирования плиты перекрытия

Схема армирования различается в зависимости от вида плит, но общие принципы армирования остаются прежними. Связано это с одинаковым для всех плит методом работы: нагрузка идет сверху вниз и распределяется на всю площадь. Это говорит о том, что основная рабочая арматура – нижняя, а верхняя получает сжимающие нагрузки. В свою очередь нижняя часть переносит растягивающие нагрузки.

Армирование монолитных перекрытий состоит из:

  • в нижней части плиты стержней;
  • в верхней части плиты рабочих стержней (они по диаметру равны верхним или меньше их);
  • армирование, перераспределяющее нагрузку;
  • подставки из катанки.

Для соединения арматуры, как правило, используют несколько видов стыков:

  • стыки без сварки внахлестку:
  1. С прямыми концами стержней профиля диаметром до 40 мм.
  2. С загибами на концах (лапки, петли, крюки), крюки и петли применяют только для гладких стержней.
  3. С прямыми концами стержней с приваркой.
  • механические и сварные соединения:
  1. Со сваркой арматуры диаметром 40 мм.
  2. С применением механических устройств (резьбовые муфты, стыки с опресованными муфтами и т.д.).

При применении гнутой арматуры (загибы концов стержней, отгибы) минимальный диаметр загиба должен быть таким, чтобы можно было избежать раскалывания или разрушения бетона внутри и в месте загиба. Максимальный угол изгиба не должен быть более 180 градусов.

Монолитные железобетонные могут частично или полностью быть опертыми по контуру с защемлением на опорах или со свободным опиранием. В монолитном строительстве часто встречаются плиты, называемые консольными, опертые на углах или те, которые защемляются по одной кромке.

Они подразделяются на балочные (неразрезные – многопролетные, разрезные – однопролетные и консольные) и работающие в обоих направлениях, которые бывают многопролетными неразрезными или однопролетными. Они считаются балочными, если усилия, которые действуют в одном направлении, пренебрежительно малы, в отличие от усилий, которые действуют в другом направлении. К балочным можно отнести прямоугольные плоские плиты, равномерно нагруженные и опертые по двум сторонам, а также плиты, защемленные по трем или четырем сторонам при соотношении пролетов, большим определенного значения. По нормативным документам отношение пролетов ограничивается 3 или 2.

К работающим в двух направлениях относят все остальные плиты различной формы (непрямоугольные, круглые, кольцевые и т.д.) и опертые на точках (плиты ). В безбалочных перекрытиях она опирается на колонны без уширений и с уширениями (с капителями). Если пролеты 6-8 м, то перекрытия лучше выполнять плоскими, а при больших значениях – межколонными балками или плоскими с капителями, пустотными или ребристыми. В больших помещениях с пролетом 10-15м строители рекомендуют ребристые, кессонные или пустотные перекрытия при опирании на балки и стены по четырем сторонам.

Для всех пролетов более 7м рекомендуется дополнительная арматура из высокопрочных канатов без сцепления с бетоном класса К-7. При выборе опирания без капителей следует предусмотреть дополнительное армирование этих участков, для предотвращения продавливания при различных нагрузках. Толщину однопролетных неразрезных плит принимают как при упругой заделке, а опертых на стены принимают как при свободном опирании.

Расстояние между рабочими стержнями не должно быть более 400 м.

Армирование монолитного перекрытия происходит стандартными сварными сетками и вязаной арматурой. Диаметр стержней сварной арматуры принимают не менее 3 мм, а диаметр вязаной – не менее 6 мм. Если толщина плиты менее 150 мм, расстояние между осями стержней арматуры внизу и над опорой вверху должно быть не более 200 мм, а при толщине более 150 мм это расстояние должно быть не более 400 мм.

Расстояние между рабочими стержнями не должно быть более 400 мм, а площадь их сечения на 1 м ширины должна обязательно быть не менее 1/3 части площади сечения стержней.

Рабочую арматуру, которая идет в направлении меньшего пролета, следует расположить ниже той, которая идет в направлении большого пролета.

В результате чего рабочая высота сечения плиты будет различна для каждого направления. При армировании сварными сетками балочных плит шириной 120 мм и при содержании растянутой арматуры до 1,5% расстояние между всеми стержнями можно спокойно увеличивать до 600 мм. Конструируют пролетную арматуру плит до 3 м шириной в виде цельной плоской сварной сетки. Ее поперечные стержни – рабочая арматура плиты. Если диаметр рабочей арматуры больше 10 мм, то плиты армируются узкими плоскими сварными сетками. Их длина должна быть равна ширине плиты. Эти продольные стержни сеток выполняют важную роль рабочей арматуры, а поперечные стержни – распределительной. Они стыкуются без сварки внахлестку.

Вернуться к оглавлению

Армирование многопролетных балочных плит

Многопролетные балочные до 100 мм толщиной армируются сварными рулонными сетками. Рулоны раскатывают поперек второстепенных балок, при этом поперечные стержни сеток стыкуют без сварки внахлестку. В крайних пролетах, где необходима дополнительная арматура, на основную укладывают дополнительную сетку. Вместо дополнительной сетки можно уложить и стержни, при этом привязывая их к основной сетке. Но если они имеют размеры не более 6х3 м, то можно армировать и одной цельной сварной сеткой. Для экономии арматуры рекомендуется применять сварные сетки с армированием в двух направлениях или разноразмерных сеток, которые накладываются друг на друга .

Если армирование происходит с помощью узких сварных сеток, то их укладывают в два слоя в перпендикулярных направлениях. При этом снизу должны быть сетки, которые укладываются вдоль меньшего пролеты. Стержни сеток следует положить впритык и при этом их не стыкуют. В сетках нижнего слоя они должны находиться под рабочей арматурой, а в сетках верхнего слоя они должны находиться сверху.

Работающую в двух направлениях надопорную арматуру с плоскими сетками конструируют также как и надопорную арматуру балочных плит. Многопролетные неразрезные с арматурой диаметром до 7 мм армируют рулонными сетками с продольными стержнями. Плиту разбивают на три полосы в каждом направлении: среднюю и две крайние по ¼ меньшего пролета. Рулоны укладывают в два слоя, раскатывают их во взаимно перпендикулярных направлениях. В этом случае надопорную арматуру углов плиты конструируют в виде плоских квадратных сеток с рабочими стержнями в обоих направлениях. Их укладывают на пересечении ребер, но при этом стержни могут быть параллельны балкам или могут укладываться к ним под углом в 45 градусов.

Комментариев:

  • Этапы расчета монолитных перекрытий
  • Пятый этап расчетов и расчетные допущения на последнем этапе
  • На каких показателях номинальной плиты основаны правильные расчеты?

Очень важно с первого раза сделать правильный расчет монолитного перекрытия, поскольку монолитными в строительстве пользуются все чаще. Так как с применением плит от изготовителя нельзя выполнить планировку дома, которая будет наиболее совершенной, важным моментом на первоначальном этапе строительства монолитных перекрытий являются вычисления.

В будущем причиной проблем с перекрытиями может стать неправильно сделанный расчет, который вызовет определенные трудности уже на стадии монтажа перекрытий. В результате на последнее перекрытие может не остаться свободного места. Эти проблемы являются самыми безобидными из тех, с которыми можно столкнуться. Можно обратиться при этом за помощью к специалистам, если опыта в области расчетов недостаточно. Сущность вопроса становится понятной после того, как все цифры и формулы уже определены.

Этапы расчета монолитных перекрытий

Делать монолитные перекрытия доступно без применения соответствующей техники, то есть подъемных кранов. Многим свойственно отказываться от проведения соответствующих расчетов, так как они представляются им сложными. Если разобраться в системе расчета, то она станет доступной.

При осуществлении расчетов необходимо учесть следующие этапы:

  1. Длины плиты.
  2. Размера плиты.
  3. Класса арматуры.
  4. Класса бетона.
  5. Нагрузки на монолитную плиту и опоры.

Расчеты оканчиваются выявлением необходимых расчетных допущений.

Полезным будет учесть опирание монолитного перекрытия. Вычислить его позволит достаточное количество факторов, включая тип кирпича либо блока, наружную ширину материала, внутреннюю, вид перекрытия.

Определять расчетную длину монолитной плиты на первом этапе необходимо с учетом различий между проектной длиной плиты и ее фактической длиной, которая может иметь любую величину. Следует брать во внимание и рассчитываемую от стен длину и ширину помещения. По факту длина плиты будет больше, поскольку будет происходить ее опирание на конструкцию стены.


Материалы, используемые для изготовления стен, куда будут опираться плиты, должны представлять собой: камень, пено- и газобетон, керамзитобетон, шлакоблок либо кирпич. Для данного материала должны быть проведены вычисления на имеющиеся типы нагрузок.

На этапе выявления классов арматуры, а также бетона, размеров плиты, без которых невозможно сделать какие-либо расчеты, следует самостоятельно задать все параметры. Пример показывает, что если высота плиты равна 10 см, а ее ширина – 100 см, то определяют величины показателей на 1 м. Если при расчетах опираются на этот факт, то при использовании плиты 4х6, для любого из 6 м ширины берутся во внимание параметры, определяемые на 1 м расчетный.

На третьем этапе при определении опор следует учитывать тип стен, показатель их тяжести. Учитывают и ширину опирания на них плит перекрытий. В расчетах несущий элемент рассматривается в качестве шарнирно-опертой бесконсольной балки.

Вернуться к оглавлению

Пятый этап расчетов и расчетные допущения на последнем этапе

Выявить размеры, которые будет иметь монолитное перекрытие, следует уже на этапе планирования.

Все размеры имеют прямую зависимость от длины и ширины пролета. При строительстве стандартного дома с применением номинальных величин можно воспользоваться теми размерами, которые указываются в СНиПе. Полученные после этого цифры помогут правильно подобрать величину пролетов, стен и нагрузки на фундамент.

Рисунки 1-7. Формулы для расчетов монолитного перекрытия.

Для определения находящегося по центру максимального изгибающегося момента монолитной плиты, которая опирается на стены, используется формула (рис. 1). На основании СНиПов 52-101-2003 и 52-01-2003 можно принять во внимание указанные ниже виды операций.

Бетон имеет сопротивление растяжению, которое принимают равным нулю, так как арматуре присущ уровень сопротивления растяжению больше в сотню раз, чем у бетона. Значение, показывающее уровень сопротивления строительного материала, нельзя принять, если оно больше расчетного сопротивления Rb, а Rs должно быть не больше значения растяжения, которое является максимальным.

Если нет достаточного опыта в проведении данных расчетов, а также если расчеты проводят в первый раз, следует изучить какой-либо пример. Он необходим для получения детального отчета обо всех параметрах и результатах. Это позволит выйти из ситуации более выгодно.

Вернуться к оглавлению

На каких показателях номинальной плиты основаны правильные расчеты?

Рисунок 8. Таблица площади поперечного сечения арматуры.

Для устранения появления эффекта пластичного шарнира для сжатой зоны бетона ξ, а также расстояния h 0 от центра тяжести арматуры до самого верха балки ξ = y/h 0 будет находиться в соотношении, которое вычисляется по формуле на рис. 2, где Rs – это величина расчетного сопротивления арматуры, имеющая единицу измерения МПа.

Полученный показатель должен быть не больше предельного значения ξ R .

Величины граничных параметров относительной высоты, которые берутся для сжатой зоны бетона, находят по таблице (рис. 2). При проведении расчетов не слишком опытными проектировщиками, которые не имеют достаточного уровня квалификации, рекомендуется занизить полученный параметр ξ R , определяющий сжатую зону, в 1,5 раза.

Рисунок 9. Таблица диаметров арматуры.

Если в сжатой зоне нет арматуры либо ξ <= ξ R , то уровень прочности бетона требуется проверять по формуле на рис. 3. Данная формула имеет смысл, связанный с тем, что появляется сила, которая работает с плечом. Поэтому данное условие применяют в отношении бетона.

Это же условие ξ <= ξ R , определяющее прочность сечения прямоугольной формы, при наличии одиночной арматуры предполагает использование формулы на рис. 4.

Смысл, который скрывается в ней, связан с тем, что арматура и бетон должны выдерживать одинаковую нагрузку в соответствии с вычислениями. Расчет монолитной плиты перекрытия нельзя считать единственным, если учитывать центр тяжести сечения.

Рисунок 10. Таблица расчета укладочного шага для арматуры.

Основные виды

Основные нагрузки на дом будут находиться на нижней арматуре, а сжимающую нагрузку будет получать верхняя, с чем может отлично справиться и бетон. Следует помнить, что подобный процесс необходимо выполнять полностью на всю длину изделия, помимо того, применять опалубку, которая является самым важным этапом в процессе монтажа конструкции. Для этого рекомендуется использовать дерево. В подобном случае в дом могут подойти как обыкновенные доски 50 на 150 мм, так и недорогая фанера.

Важно надежно и прочно закреплять стойки опалубки и выполнить расчет, потому что вес бетона, который будет использоваться при проведении подобной операции, достаточно часто достигает 300 кг на 1 м². Единственное, без чего весьма сложно обойтись в процессе монтажа армированной конструкции, – это телескопические стойки. Это надежный и удобный инструмент. Стойка может выдержать 2 т веса, чего нельзя сказать про доски, в которых могут появиться микротрещины либо сучки.

Укладка арматуры

При установке такого перекрытия достаточно важным будет правильный перекрытия. Для подобных конструкций в домашних условиях необходимо применять стальную горячекатаную арматуру, которая имеет класс А3. Диаметр подобной арматуры будет составлять приблизительно 8-14 мм в зависимости от нагрузки, расчет которой производится.

Плита обязательно должна армироваться в 2 слоя. Первая сетка прокладывается в нижней части плиты, а вторая – в верхней. Сетки будут располагаться в середине бетона. Защитный слой, который создается опалубкой, должен быть не менее чем 15-20 мм. Арматура в сетку связывается при помощи вязальной проволоки. Размеры ячеек должны быть 200×200 мм либо 150×150 мм.

Арматура в сетке должна быть цельной, без каких-либо разрывов. В случае если будет не хватать длины арматуры, дополнительная арматура должна быть подвязана с нахлестом, который равняется 40 диаметрам арматуры. Если планируется армировать перекрытие арматурой d-10, то понадобится сделать нахлест в 400 мм. Стыки арматуры должны быть расположены в шахматном порядке, в разбежку. Края верхней и нижней арматуры в сетках необходимо связывать между собой при помощи П-образного усиления.

Нагрузки на железобетонную плиту будут передаваться сверху вниз и распределяться полностью на всю площадь покрытия. Следовательно, можно сделать следующий вывод: основной рабочей арматурой будет нижняя, которая испытывает растягивающие нагрузки. Верхняя будет получать нагрузки на сжатие. Инженерный расчет должен учитывать дополнительные арматурные усиления, однако есть и некоторые общие правила.

В процессе выполнения процедуры армирования нижней сетки дополнительную арматуру следует прокладывать в середине между несущими опорами. При связке верхней сетки над несущими опорами прокладываются усиления. Помимо того, необходима дополнительная арматура в местах скопления нагрузок и отверстий. Отдельными хлыстами делается дополнительное армирование, при этом они должны иметь длину 400-2000 мм в зависимости от ширины пролетов. Нижняя сетка усиливается в проеме между стенками.

Верхняя сетка должна усиливаться над несущими стенами. Армирование подобных конструкций своими руками в местах, в которых они опираются на колонны. Оно будет сильно отличаться от традиционного армирования. Данные участки требуют дополнительного создания объемных усилений.

Плита перекрытия заливается при помощи бетононасоса. При заливке в обязательном порядке необходимо уплотнить бетон, для чего чаще всего применяется глубинный вибратор. сопровождается его усадкой, которая будет возрастать при высыхании бетонного раствора. На его поверхности могут появляться микротрещины.

Установка опалубки

Профессиональная опалубка для заливки подобных плит может обойтись в достаточно большое количество денежных средств, приблизительно столько же, сколько стоит и сама плита вместе с работой. Однако не стоит расстраиваться, в случае если дом строится своими силами, обойтись можно будет и обыкновенными досками 50х150 мм или фанерой. Фанера и доски в последствии могут понадобиться для выполнения подшивки крыши и потолка, то есть все равно понадобилось бы потратить данные денежные средства.

На сегодняшний день существует достаточно большое количество фирм, которые сдают телескопические стойки и опалубку в аренду. Аренда стоек может обойтись приблизительно в 70-100 рублей за 1 м² площади.

Процесс монтажа опалубки должен производиться поэтапно:

  1. Стойки с треногами должны выставляться рядами, при этом расстояние между ними должно быть 1-1,2 м.
  2. Продольный брус прокладывается сверху на стойки, после чего стойки должны вытягиваться на необходимую высоту.
  3. На продольный брус прокладывается поперечный брус (кладка может выполняться лежа). Брус понадобится сбить в единую сетку, после чего на него стелется фанера.
  4. После того как будет произведен настил фанеры, с помощью нивелира нужно будет выровнять полностью всю плиту. Далее начинается армирование.

Не нашли ответа в статье? Больше информации

Дано:

1. Кирпичные стены из полнотелого кирпича толщиной 510 мм образуют замкнутое помещение с размерами 5х5 м, на стены будет опираться монолитная железобетонная плита, ширина опорных площадок 250 мм. Таким образом полный размер плиты 5,5х5,5 м. Расчетные пролеты l 1 = l 2 = 5 м.

2. Монолитная железобетонная плита кроме своего веса, прямо зависящего от высоты плиты, должна выдерживать еще и некую расчетную нагрузку. Хорошо, когда такая нагрузка известна, например, по плите высотой 15 см будет выравнивающая цементная стяжка толщиной 5 см, на стяжку будет уложен ламинат толщиной 8 мм, а на напольное покрытие из ламината будет ставиться мебель с соответствующими размерами вдоль стен общим весом 2000 кг (вместе с содержимым), а посредине помещения будет иногда стоять стол с соответствующими размерами весом в 200 кг (вместе с выпивкой и закуской), а за столом будет сидеть 10 человек общим весом 1200 кг, вместе со стульями. Но такое бывает очень редко, а если точнее, то почти никогда, потому как предусмотреть все возможные варианты и комбинации нагрузок на перекрытие могут только великие прорицатели. Нострадамус никаких заметок по этому поводу не оставил, поэтому обычно при расчетах пользуются статистическими данными и теорией вероятности. А эти данные говорят, что обычно рассчитывать плиту в жилом доме можно на распределенную нагрузку q в = 400 кг/м 2 , в этой нагрузке есть и стяжка и напольное покрытие и мебель и гости за столом. Эту нагрузку можно условно считать временной, так как впереди могут быть ремонты, перепланировки и прочие неожиданности, при этом одна часть этой нагрузки является длительной, а другая часть - кратковременной. Так как соотношения длительной и кратковременной нагрузки мы не знаем, то для упрощения расчетов просто будем считать ее временной нагрузкой. Так как высота плиты нам пока не известна, то ее можно принять предварительно, например h = 15 см, и тогда нагрузка от собственного веса монолитной плиты будет составлять приблизительно q п = 0б15х2500 = 375 кг/м². Приблизительно потому, что точный вес квадратного метра железобетонной плиты зависит не только от количества и диаметра арматуры, но и от размеров и породы крупного и мелкого наполнителей бетона, от качества уплотнения и других факторов. Эта нагрузка является постоянной, изменить ее смогут только антигравитационные технологии, но таковых в широком доступе пока не наблюдается. Таким образом суммарная распределенная нагрузка на нашу плиту составит:

q = q п + q в = 375 + 400 = 775 кг/м²

3. Для плиты будет использоваться бетон класса В20, имеющий расчетное сопротивление сжатию R b = 11,5 МПа или 117 кгс/см² и арматура класса AIII, с расчетным сопротивлением растяжению R s = 355 МПа или 3600 кгс/см² .

Требуется:

Подобрать сечение арматуры.

Решение:

1. Определение максимального изгибающего момента.

Если бы наша плита опиралась только на 2 стены, то такую плиту можно было бы рассматривать как балку на двух шарнирных опорах (ширину опорных площадок пока не учитываем), при этом ширина балки для удобства расчетов принимается b = 1 м.

Однако в данном случае у нас плита опирается на 4 стены. А это значит, что рассматривать одно поперечное сечение балки относительно оси х недостаточно, ведь мы можем рассматривать нашу плиту также как балку относительно оси z . А еще это означает, что сжимающие и растягивающие напряжения будут не в одной плоскости, нормальной к оси х , а в двух плоскостях. Если рассчитывать балку с шарнирными опорами с пролетом l 1 относительно оси х , то получится, что на балку действует изгибающий момент m 1 = q 1 l 1 2 /8. При этом на балку с шарнирными опорами с пролетом l 2 будет действовать точно такой же момент m 2 , так как пролеты у нас равны. Но расчетная нагрузка у нас одна:

q = q 1 + q 2

и если плита квадратная, то мы можем допустить, что:

q 1 = q 2 = 0,5q

m 1 = m 2 = q 1 l 1 2 /8 = ql 1 2 /16 = ql 2 2 /16

Это означает, что арматуру, укладываемую параллельно оси х , и арматуру, укладываемую параллельно оси z , мы можем рассчитывать на одинаковый изгибающий момент, при этом момент этот будет в два раза меньше, чем для плиты, опирающейся на две стены. Таким образом максимальный расчетный изгибающий момент составит:

М а = 775 х 5 2 /16 = 1219,94 кгс·м

Однако такое значение момента можно использовать только для расчета арматуры. Так как на бетон будут действовать сжимающие напряжения в двух взаимно перпендикулярных плоскостях, то значение изгибающего момента для бетона следует принимать больше:

М б = (m 1 2 + m 2 2) 0,5 = M а √2 = 1219,94·1,4142 = 1725,25 кгс·м

А так как для расчетов нам нужно некоторое единое значение момента, то можно предположить, что среднее значение между моментом для арматуры и для бетона и будет расчетным

М = (М а + М б)/2 = 1,207М а = 1472,6 кгс·м

Примечание : Если вам не нравится такое предположение, то можете рассчитывать арматуру по моменту, действующему на бетон.

2. Подбор сечения арматуры.

Рассчитать сечение арматуры как в продольном, так и в поперечном направлении можно по разным из предлагаемых методик, результат будет приблизительно одинаковым. Но при использовании любой из методик необходимо помнить о том, что высота расположения арматуры будет разная, например, для арматуры, располагаемой параллельно оси х h 01 = 13 см , а для арматуры, располагаемой параллельно оси z , можно предварительно принять h 02 = 11 см , так как диаметра арматуры мы пока не знаем.

По старой методике:

А 01 = M/bh 2 01 R b = 1472,6/(1·0,13 2 ·1170000) = 0,0745

А 02 = M/bh 2 01 R b = 1472,6/(1·0,11 2 ·1170000) = 0,104

Теперь по вспомогательной таблице:

Данные для расчета изгибаемых элементов прямоугольного сечения,
армированных одиночной арматурой

мы можем найти η 1 = 0,961 и ξ 1 = 0,077. η 2 = 0,945 и ξ 2 = 0,11. И тогда требуемая площадь сечения арматуры:

F a1 = M/ηh 01 R s = 1472,6/(0,961·0,13·36000000) = 0,0003275 м 2 или 3,275 см 2 .

F a2 = M/ηh 02 R s = 1472,6/(0,956·0.11·36000000) = 0,0003604 м 2 или 3,6 см 2 .

Если мы для унификации примем и продольную и поперечную арматуру диаметром 10 мм и пересчитаем требуемое сечение поперечной арматуры при h 02 = 12 см ,

А 02 = M/bh 2 01 R b = 1472,6/(1·0,12 2 ·1170000) = 0,087, η 2 = 0,957

F a2 = M/ηh 02 R s = 1472,6/(0.963·0,12·36000000) = 0,000355 м 2 или 3,55 см 2 .

то для армирования 1 погонного метра мы можем использовать 5 стержней продольной арматуры и 5 стержней поперечной арматуры. Таким образом получится сетка с ячейкой 200х200 мм. Площадь сечения арматуры для 1 погонного метра составит 3,93х2 = 7,86 см². Подбор сечения арматуры удобно производить по таблице 2 (см. ниже). На всю плиту потребуется 50 стержней длиной 5,2 - 5,4 метра. С учетом того, что в верхней части у нас сечение арматуры с хорошим запасом, мы можем уменьшить количество стержней в нижнем слое до 4, тогда площадь сечения арматуры нижнего слоя составит 3,14 см² или 15,7 см² по всей длине плиты.

Площади поперечных сечений и масса арматурных стержней

Это был простой расчет, его можно усложнить с целью уменьшения количества арматуры. Так как максимальный изгибающий момент действует только в центре плиты, а при приближении к опорам-стенам момент стремится к нулю, то остальные погонные метры кроме центральных можно армировать арматурой меньшего диаметра (размер ячейки для арматуры диаметром 10 мм увеличивать не стоит, так как наша распределенная нагрузка является в достаточной степени условной). Для этого нужно определять значения моментов для каждой из рассматриваемых плоскостей на каждом следующем погонном метре и определять для каждого погонного метра требуемое сечение арматуры и размер ячейки. Но все равно конструктивно использовать арматуру с шагом более 250 мм не стоит, поэтому экономия от таких расчетов будет не большой.

Примечание : существующие методики расчета плит перекрытия, опирающихся по контуру, для панельных домов предполагают использование дополнительного коэффициента, учитывающего пространственную работу плиты (так как под воздействием нагрузки плита будет прогибаться) и концентрацию арматуры в центре плиты. Использование такого коэффициента позволяет уменьшить сечение арматуры еще на 3-10%, однако для железобетонных плит, изготавливаемых не на заводе, а на стройплощадке, использование дополнительного коэффициента считаю не обязательным. Во-первых, потребуются дополнительные расчеты на прогиб, на раскрытие трещин, на процент минимального армирования. А во-вторых, чем больше арматуры, тем меньше будет прогиб посредине плиты и тем проще его будет устранить или замаскировать при финишной отделке.

Например, если воспользоваться "Рекомендациями по расчету и конструированию сборных сплошных плит перекрытий жилых и общественных зданий", то площадь сечения арматуры нижнего слоя по всей длине плиты составит около А 01 = 9,5 см² (расчет не приводится), что почти в 1,6 раза (15,7/9,5 = 1,65) меньше полученного нами результата, однако при этом следует помнить, что концентрация арматуры должна быть максимальной посредине пролета и потому просто разделить полученное значение на 5 метров длины нельзя. Тем не менее по этому значению площади сечения можно приблизительно оценить, сколько можно сэкономить арматуры в результате долгих и кропотливых расчетов.

Пример расчета прямоугольной монолитной железобетонной плиты
с опиранием по контуру

Для упрощения расчетов все параметры, кроме длины и ширины помещения, примем такими же, как в первом примере. Очевидно, что в прямоугольных плитах перекрытия моменты, действующие относительно оси х и относительно оси z , не равны между собой. И чем больше разница между длиной и шириной помещения, тем больше плита напоминает балку на шарнирных опорах и при достижении некоторого значения влияние поперечной арматуры становится практически неизменным. Опыт проектирования и экспериментальные данные показывают, что при соотношении λ = l 2 / l 1 > 3 поперечный момент будет в пять раз меньше продольного. А если λ ≤ 3, то определить соотношение моментов можно по следующему эмпирическому графику:


График зависимости моментов от соотношения λ:
1 - для плит с шарнирным опиранием по контуру
2 - с шарнирным опиранием по 3 сторонам

На графике пунктиром показаны нижние допустимые пределы при подборе арматуры, а в скобках - значения λ для плит с опиранием по 3 сторонам (при λ < 0,5 m = λ, а для нижних пределов m = λ/2). Но в данном случае нас интересует только кривая №1, отображающая теоретические значения. На ней мы видим подтверждение нашего предположения, что соотношение моментов равно единице для квадратной плиты и по ней можем определить значения моментов для других соотношений длины и ширины.

Например, нужно рассчитать плиту для помещения длиной 8 м и шириной 5 метра (для наглядности один из размеров оставляем тем же), соответственно расчетные пролеты будут l 2 = 8 м и l 1 = 5 м. Тогда λ = 8/5 = 1,6, а соотношение моментов m 2 /m 1 = 0,49 и тогда m 2 = 0,49m 1

Так как общий момент у нас равен M = m 1 + m 2 , то M = m 1 + 0,49m 1 или m 1 = M/1,49.

В этом случае значение общего момента определяется по короткой стороне по той простой причине, что это разумное решение:

М а = ql 1 2 /8 = 775 х 5 2 / 8 = 2421,875 кгс·м

Изгибающий момент для бетона с учетом не линейного, а плоского напряженного состояния

М б = М а (1 2 + 0,49 2) 0,5 = 2421,875·1,113 = 2697 кгс·м

тогда расчетный момент

М = (2421,875 + 2697)/2 = 2559,43

При этом нижнюю (короткую, длиной 5,4 м) арматуру мы будем рассчитывать на момент:

m 1 = 2559,43 / 1,49 = 1717,74 кгс·м

а верхнюю (длинную, длиной 8,4 м) арматуру мы будем рассчитывать на момент

m 2 = 1717,74 х 0,49 = 841,7 кгс·м

Таким образом:

А 01 = m 1 /bh 2 01 R b = 1717,74/(1·0,13 2 ·1170000) = 0,0868

А 02 = m 2 /bh 2 01 R b = 841,7/(1·0,12 2 ·1170000) = 0,05

Теперь по вспомогательной таблице 1 мы можем найти η 1 = 0,954 и ξ 1 = 0,092. η 2 = 0,974 и ξ 2 = 0,051.
И тогда требуемая площадь сечения арматуры:

F a1 = m 1 /ηh 01 R s = 1810/(0,952·0,13·36000000) = 0,0003845 м 2 или 3,845 см 2 .

F a2 = m 2 /ηh 02 R s = 886,9/(0,972·0,12·36000000) = 0,0002 м 2 или 2 см 2 .

Таким образом для армирования 1 погонного метра плиты можно использовать 5 стержней арматуры диаметром 10 мм длиной 5,2 - 5,4 м. Площадь сечения продольной арматуры для 1 погонного метра составит 3,93 см². Для поперечного армирования можно использовать 4 стержня диаметром 8 мм длиной 8,2 - 8,4 м. Площадь сечения поперечной арматуры для 1 погонного метра составит 2,01 см².

При расчете по "Рекомендациям..." общая площадь сечения нижней арматуры по длине 8 метров составит 24,44 см² или приблизительно 3,055 см² на 1 метр длины плиты. В данном случае разница составляет приблизительно 1,26 раз.

Но все это опять же - упрощенный вариант расчета. Если есть желание еще уменьшить сечение арматуры или класс бетона или высоту плиты и тем самым уменьшить нагрузку, то можно рассматривать различные варианты загружения плиты и вычислять, даст ли это какой-то эффект. Например, мы, как уже говорилось, для простоты расчетов не учитывали влияние опорных площадок, а между тем, если на эти участки плиты сверху будут опираться стены и таким образом приближать плиту к жесткому защемлению, то при большой массе стен эту нагрузку можно учесть, если ширина опорных участков больше половины ширины стены. Когда ширина опорных участков меньше или равна половине ширины стены, то потребуется дополнительный расчет материала стены на прочность и все равно вероятность, того что на опорные участки стены не будет передаваться нагрузка от веса стены, очень велика.

Рассмотрим вариант, когда ширина опорных участков плиты около 370 мм для кирпичных стен шириной 510 мм, в этом случае вероятность полной передачи нагрузки от стены на опорную часть плиты достаточно велика и тогда если на плиту будут выкладываться стены шириной 510 мм, высотой 2,8 м, а затем на эти стены будет также опираться плита перекрытия следующего этажа, то постоянная сосредоточенная нагрузка на погонный метр опорного участка плиты составит:

от стены из полнотелого кирпича 1800 х 2,8 х 1 х 0,51 = 2570,4 кг
от плиты перекрытия высотой 150 мм: 2500 х 5 х 1 х 0,15 / (2 х 1,49) = 629,2 кг

Более правильно было бы рассматривать в этом случае нашу плиту как шарнирно опертую балку с консолями, а сосредоточенную нагрузку как неравномерно распределенную нагрузку на консоли, причем чем ближе к краю плиты, тем значение нагрузки больше, однако для упрощения расчетов предположим, что эта нагрузка равномерно распределена на консолях и таким образом составляет 3199,6/0,37 = 8647,56 кг/м. Момент на расчетных шарнирных опорах от такой нагрузки составит 591,926 кгс·м. А это означает, что:

1. Максимальный момент в пролете m 1 уменьшится на эту величину и составит m 1 = 1717,74 - 591,926 = 1126 кгс·м и таким образом сечение арматуры можно явно уменьшить или изменить другие параметры плиты.

2. Изгибающий момент на опорах вызывает растягивающие напряжения в верхней области плиты, а бетон на работу в области растяжения никак не рассчитан и значит нужно либо дополнительно армировать плиту в верхней части, либо уменьшать ширину опорного участка (консоли балки) для уменьшения нагрузки на опорные участки. Если дополнительного армирования в верхней части плиты не будет, то в плите появятся трещины и она все равно превратится в шарнирно опертую плиту без консолей.

3. Этот вариант загружения нужно рассматривать совместно с вариантом, когда плита перекрытия уже есть, а стен еще нет и таким образом нет временной нагрузки на плиту, но и нет нагрузки от стен и вышележащей плиты.