Будівництво та ремонт

Основні формули для розв'язання тригонометричних рівнянь. Найпростіші тригонометричні рівняння

Завдання №1

Логіка проста: будемо чинити так, як чинили раніше, незважаючи на те, що тепер у тригонометричних функцій став складніший аргумент!

Якби вирішували рівняння виду:

То ми б записали ось таку відповідь:

Або (оскільки)

Але тепер у ролі у нас виступаємо такий вираз:

Тоді можна записати:

Наша з тобою мета - зробити так, щоб ліворуч стояв просто, без жодних «домішок»!

Давай поступово їх позбуватися!

Спочатку приберемо знаменник при: для цього домножимо нашу рівність на:

Тепер позбудемося, розділивши на нього обидві частини:

Тепер позбавимося вісімки:

Отримане вираз можна розписати як дві серії рішень (за аналогією з квадратним рівнянням, де ми або додаємо, або віднімаємо дискримінант)

Нам потрібно знайти найбільший негативний корінь! Зрозуміло, що треба перебирати.

Розглянемо спочатку першу серію:

Ясно, що якщо ми братимемо то в результаті ми отримуватимемо позитивні числа, а вони нас не цікавлять.

Отже, треба брати негативним. Нехай.

При корінь буде вже:

А нам потрібно знайти найбільший негативний! Отже йти у негативний бік тут не має сенсу. І найбільший негативний корінь для цієї серії дорівнюватиме.

Тепер розглядаємо другу серію:

І знову підставляємо: , Тоді:

Не цікавить!

Тоді збільшувати більше немає сенсу! Зменшуватимемо! Нехай тоді:

Підходить!

Нехай. Тоді

Тоді – найбільший негативний корінь!

Відповідь:

Завдання №2

Знову вирішуємо, незважаючи на складний аргумент косинуса:

Тепер знову висловлюємо ліворуч:

Примножуємо обидві сторони на

Ділимо обидві сторони на

Все, що залишилося - це перенести праворуч, змінивши її знак з мінусу на плюс.

У нас знову виходить 2 серії коренів, одна, а інша с.

Нам потрібно знайти найбільший негативний корінь. Розглянемо першу серію:

Ясно, що перший негативний корінь ми отримаємо, він буде дорівнює і буде найбільшим негативним коренем в 1 серії.

Для другої серії

Перший негативний корінь буде отриманий також і буде дорівнює. Так, то - найбільший негативний корінь рівняння.

Відповідь: .

Завдання №3

Вирішуємо, незважаючи на складний аргумент тангенсу.

Ось, начебто нічого складного, чи не так?

Як і раніше, виражаємо у лівій частині:

Ну ось і чудово, тут взагалі лише одна серія коренів! Знову знайдемо найбільший негативний.

Ясно, що виходить, якщо покласти. І корінь цей дорівнює.

Відповідь:

Тепер спробуй самостійно вирішити такі завдання.

Домашня робота або 3 завдання для самостійного вирішення.

  1. Розв'яжіть рівняння.
  2. Розв'яжіть рівняння.
    У від-ві-ті на-пи-ши-те найменший по-ло-жи-тель-ний корінь.
  3. Розв'яжіть рівняння.
    У від-ві-ті на-пи-ши-те найменший по-ло-жи-тель-ний корінь.

Готовий? Перевіряємо. Я не буду докладно описувати весь алгоритм рішення, мені здається, йому й так приділено достатньо уваги вище.

Ну що, все вірно? Ох вже ці гидкі синуси, з ними завжди якісь лиха!

Ну що ж, тепер ти вмієш вирішувати найпростіші тригонометричні рівняння!

Звірись з рішеннями та відповідями:

Завдання №1

Висловимо

Найменший позитивний корінь вийде, якщо покласти, тому що, то

Відповідь:

Завдання №2

Найменший позитивний корінь вийде.

Він дорівнюватиме.

Відповідь: .

Завдання №3

При отримуємо, маємо.

Відповідь: .

Ці знання допоможуть тобі вирішувати багато завдань, з якими ти зіткнешся в іспиті.

Якщо ж ти претендуєш на оцінку «5», то просто необхідно перейти до читання статті для середнього рівня,яка буде присвячена вирішенню складніших тригонометричних рівнянь (завдання С1).

СЕРЕДНІЙ РІВЕНЬ

У цій статті я опишу розв'язання тригонометричних рівнянь складнішого типуі як проводити відбір їх коріння. Тут я спиратимуся на наступні теми:

  1. Тригонометричні рівняння для початкового рівня (див вище).

Більш складні тригонометричні рівняння – це основа завдань підвищеної складності. Вони потрібно як вирішити саме рівняння у загальному вигляді, і знайти коріння цього рівняння, належать деякому заданому проміжку.

Розв'язання тригонометричних рівнянь зводиться до двох підзавдань:

  1. Вирішення рівняння
  2. Відбір коренів

Слід зазначити, що друге потрібно не завжди, але все ж таки в більшості прикладів потрібно проводити відбір. А якщо ж він не потрібний, то тобі швидше можна поспівчувати - це означає, що рівняння досить складне саме по собі.

Мій досвід аналізу завдань С1 показує, що вони зазвичай діляться на такі категорії.

Чотири категорії завдань підвищеної складності (раніше С1)

  1. Рівняння, що зводяться до розкладання множників.
  2. Рівняння, що зводяться до вигляду.
  3. Рівняння, які вирішуються заміною змінної.
  4. Рівняння, що вимагають додаткового відбору коренів через ірраціональність або знаменник.

Говорячи по-простому: якщо тобі попалося одне із рівнянь перших трьох типів, то вважай, що тобі пощастило. Для них зазвичай додатково потрібно підібрати коріння, що належать деякому проміжку.

Якщо ж тобі трапилося рівняння 4 типу, то тобі пощастило менше: з ним потрібно повозитися довше і уважніше, зате досить часто в ньому не потрібно додатково відбирати коріння. Проте цей тип рівнянь я розбиратиму в наступній статті, а цю присвячу вирішенню рівнянь перших трьох типів.

Рівняння, що зводяться до розкладання на множники

Найважливіше, що тобі потрібно пам'ятати, щоб вирішувати рівняння цього

Як показує практика, зазвичай цих знань достатньо. Давай звернімося до прикладів:

Приклад 1. Рівняння, що зводяться до розкладання на множники за допомогою формул приведення та синусу подвійного кута

  • Ре-ши-те урав-не-ня
  • Знайди всі коріння цього рівняння, при-над-ле-жа-щі від-різ-ку

Тут, як я і обіцяв, працюють формули приведення:

Тоді моє рівняння набуде такого вигляду:

Тоді моє рівняння набуде наступної форми:

Недалекоглядний учень міг би сказати: а тепер я скорочу обидві частини на, отримую найпростіше рівняння та тішуся життя! І буде гірко помилятися!

ЗАПАМ'ЯТАЙ: НІКОЛИ НЕ МОЖНА СКОРОЧУВАТИ ОБІДВІ ЧАСТИНИ ТРИГОНОМЕТРІЧНОГО РІВНЯННЯ НА ФУНКЦІЮ, ЩО ВМІСТУЄ НЕВІДОМУ! ТАКИМ ОБРАЗОМ, ТИ ВТРАЧАЄШЬ КОРІННЯ!

То що робити? Та все просто, переносити все в один бік і виносити спільний множник:

Ну ось, на множники розклали, ура! Тепер вирішуємо:

Перше рівняння має коріння:

А друге:

На цьому першу частину завдання вирішено. Тепер потрібно відібрати коріння:

Проміжок такий:

Або його ще можна записати ось так:

Ну що, давай відбирати коріння:

Спочатку попрацюємо з першою серією (та й простіше вона, що вже казати!)

Так як наш проміжок - цілком негативний, то немає потреби брати неотрицательные, все одно вони дадуть неотрицательные коріння.

Візьмемо, тоді - забагато, не влучає.

Нехай тоді - знову не потрапив.

Ще одна спроба - тоді, є, потрапив! Перший корінь знайдено!

Стріляю ще раз: , Тоді - ще раз потрапив!

Ну і ще разок: - це вже переліт.

Так що з першої серії проміжку належать 2 корені: .

Працюємо з другою серією (зводимо у ступінь за правилом):

Недолє!

Знову недолітає!

Знову недоліт!

Влучив!

Переліт!

Таким чином, моєму проміжку належать ось такі корені:

Ось за таким алгоритмом ми і вирішуватимемо всі інші приклади. Давай разом потренуємось ще на одному прикладі.

Приклад 2. Рівняння, що зводяться до розкладання множників за допомогою формул приведення

  • Розв'яжіть рівняння

Рішення:

Знову горезвісні формули приведення:

Знов не здумай скорочувати!

Перше рівняння має коріння:

А друге:

Тепер знову пошук коріння.

Почну з другої серії, мені про неї вже все відомо з попереднього прикладу! Подивися і переконайся, що коріння, що належить проміжку, наступне:

Тепер перша серія і вона простіше:

Якщо - підходить

Якщо - теж годиться

Якщо – вже переліт.

Тоді коріння буде наступне:

Самостійна робота. 3 рівняння.

Ну що, техніка тобі зрозуміла? Розв'язання тригонометричних рівнянь вже не здається таким складним? Тоді швиденько вирішуй наступні завдання самостійно, а потім ми з тобою вирішуватимемо інші приклади:

  1. Розв'яжіть рівняння
    Знай-діть всі коріння цього рівняння, при-над-ле-жа-щі проміжку.
  2. Ре-ши-те урав-не-ня
    Ука-жи-те коріння рівняння, при-над-ле-жа-щі від-різ-ку
  3. Ре-ши-те урав-не-ня
    Знайди всі коріння цього рівняння, при-над-ле-жа-щіе про-мі-жут-ку.

Рівняння 1.

І знову формула приведення:

Перша серія коренів:

Друга серія коренів:

Починаємо відбір для проміжку

Відповідь: , .

Рівняння 2. Перевірка самостійної роботи.

Досить хитре угруповання на множники (застосую формулу синуса подвійного кута):

тоді чи

Це спільне рішення. Тепер треба відбирати коріння. Біда у цьому, що ми можемо сказати точне значення кута, косинус якого дорівнює однієї чверті. Тому я не можу просто так позбутися арккосинусу - ось така досада!

Що я можу зробити, то це прикинути, що так як, те.

Складемо таблицю: проміжок:

Ну що ж, шляхом болісних пошуків ми дійшли невтішного висновку про те, що наше рівняння має один корінь на вказаному проміжку: \displaystyle arccos\frac(1)(4)-5\pi

3. Перевірка самостійної роботи.

Рівняння виду, що лякає. Однак вирішується досить просто шляхом застосування формули синуса подвійного кута:

Скоротимо на 2:

Згрупуємо перше доданок з другим і третє з четвертим і винесемо загальні множники:

Ясно, що перше рівняння коріння не має, а тепер розглянемо друге:

Взагалі я збирався трохи пізніше зупинитися на вирішенні таких рівнянь, але якщо вже підвернулося, то робити нічого, треба вирішувати.

Рівняння виду:

Дане рівняння вирішується розподілом обох частин на:

Таким чином, наше рівняння має єдину серію коренів:

Потрібно знайти ті, які належать промежутку: .

Знову збудуємо табличку, як я робив і раніше:

Відповідь: .

Рівняння, що зводяться до вигляду:

Ну ось, тепер саме час переходити до другої порції рівнянь, тим більше, що я вже й так проговорився в чому полягає розв'язання тригонометричних рівнянь нового типу. Але не зайвим буде повторити, що рівняння виду

Вирішується розподілом обох частин на косинус:

  1. Ре-ши-те урав-не-ня
    Вкажіть коріння рівняння, при-над-ле-жа-щі від-різ-ку.
  2. Ре-ши-те урав-не-ня
    Ука-жіть коріння рівняння, на-д-ле-жа-щі-щі про-мі-жут-ку.

приклад 1.

Перше – ну зовсім просте. Перенесемо вправо і застосуємо формулу косинуса подвійного кута:

Ага! Рівняння виду: . Поділяю обидві частини на

Робимо відсів коріння:

Проміжок:

Відповідь:

приклад 2.

Все теж досить тривіально: розкриємо дужки праворуч:

Основне тригонометричне тотожність:

Синус подвійного кута:

Остаточно отримаємо:

Відсів коріння: проміжок.

Відповідь: .

Ну як тобі техніка, не надто складна? Я сподіваюсь що ні. Відразу можна обмовитися: у чистому вигляді рівняння, які зводяться до рівняння щодо тангенса, зустрічаються досить рідко. Як правило, цей перехід (розподіл на косинус) є лише частиною складнішого завдання. Ось тобі приклад, щоб ти міг вправлятися:

  • Ре-ши-те урав-не-ня
  • Знай-ди-те всі коріння цього рівняння, при-над-ле-жа-щі від-різ-ку.

Давай звірятися:

Рівняння вирішується відразу ж, достатньо поділити обидві частини на:

Відсів коренів:

Відповідь: .

Так чи інакше, ми ще маємо зустрітися з рівняннями того виду, які ми щойно розібрали. Проте нам ще рано закруглюватись: залишився ще один «пласт» рівнянь, які ми не розібрали. Отже:

Розв'язання тригонометричних рівнянь заміною змінної

Тут все прозоро: дивимося уважно на рівняння, максимально його спрощуємо, робимо заміну, вирішуємо, робимо зворотну заміну! На словах усе дуже легко. Давай подивимося на ділі:

приклад.

  • Розв'язати рівняння: .
  • Знай-ди-те всі коріння цього рівняння, при-над-ле-жа-щі від-різ-ку.

Ну що ж, тут заміна сама напрошується до нас у руки!

Тоді наше рівняння перетвориться на таке:

Перше рівняння має коріння:

А друге ось такі:

Тепер знайдемо коріння, що належить проміжку

Відповідь: .

Давай разом розберемо трохи складніший приклад:

  • Ре-ши-те урав-не-ня
  • Вка-жіть коріння дан-ного рівняння, на-д-ле-жа-щі про-мі-жут-ку.

Тут заміна відразу не видно, більше того, вона не дуже очевидна. Давай спочатку подумаємо: що ми можемо зробити?

Можемо, наприклад, уявити

А заразом і

Тоді моє рівняння набуде вигляду:

А тепер увага, фокус:

Давай розділимо обидві частини рівняння на:

Раптом ми з тобою здобули квадратне рівняння щодо! Зробимо заміну, тоді отримаємо:

Рівняння має наступне коріння:

Неприємна друга серія коріння, але нічого не вдієш! Проводимо відбір коренів на проміжку.

Нам також слід враховувати, що

Так як і, то

Відповідь:

Для закріплення, перш ніж ти сам вирішуватимеш завдання, ось тобі ще вправа :

  • Ре-ши-те урав-не-ня
  • Знайди всі коріння цього рівняння, при-над-ле-жа-щіе про-мі-жут-ку.

Тут треба тримати вухо гостро: у нас з'явилися знаменники, які можуть бути нульовими! Тому треба бути особливо уважними до коріння!

Насамперед, мені потрібно перетворити рівняння так, щоб я міг зробити відповідну заміну. Я не можу придумати зараз нічого кращого, ніж переписати тангенс через синус та косинус:

Тепер я перейду від косинуса до синуса за основною тригонометричною тотожністю:

І, нарешті, приведу все до спільного знаменника:

Тепер я можу перейти до рівняння:

Але за (тобто за).

Тепер все готове для заміни:

Тоді чи

Однак зверни увагу, що якщо при цьому!

Хто від цього страждає? Біда з тангенсом, він не визначений, коли косинус дорівнює нулю (відбувається поділ на нуль).

Отже, коріння рівняння такі:

Тепер виробляємо відсівання коренів на проміжку:

- підходить
- перебір

Таким чином, наше рівняння має єдиний корінь на проміжку, і він дорівнює.

Бачиш: поява знаменника (також, як і тангенса, призводить до певних труднощів з корінням! Тут треба бути більш уважним!).

Що ж, ми з тобою майже закінчили розбір тригонометричних рівнянь, залишилося зовсім небагато – самостійно вирішити два завдання. Ось вони.

  1. Розв'яжіть рівняння
    Знай-ди-те всі коріння цього рівняння, при-над-ле-жа-щі від-різ-ку.
  2. Ре-ши-те урав-не-ня
    Ука-жіть коріння цього рівняння, при-над-ле-жа-щі від-різ-ку.

Вирішив? Чи не дуже складно? Давай звірятися:

  1. Працюємо за формулами приведення:

    Підставляємо в рівняння:

    Перепишемо все через косинуси, щоб зручніше було робити заміну:

    Тепер легко зробити заміну:

    Зрозуміло, що сторонній корінь, оскільки рівняння рішень немає. Тоді:

    Шукаємо потрібне нам коріння на проміжку

    Відповідь: .


  2. Тут заміна видно відразу:

    Тоді чи

    - Підходить! - Підходить!
    - Підходить! - Підходить!
    - Багато! - теж багато!

    Відповідь:

Ну ось тепер все! Але рішення тригонометричних рівнянь на цьому не закінчується, за бортом у нас залишилися найскладніші випадки: коли в рівняннях є ірраціональність або різного роду «складні знаменники». Як вирішувати подібні завдання, ми розглянемо у статті для просунутого рівня.

ПРОСУНУТИЙ РІВЕНЬ

На додаток до розглянутих у попередніх двох статтях тригонометричних рівнянь, розглянемо ще один клас рівнянь, які потребують ще більш уважного аналізу. Дані тригонометричні приклади містять або ірраціональність, або знаменник, що робить їх аналіз складнішим.. Тим не менш, ти цілком можеш зіткнутися з даними рівняннями в частині З екзаменаційної роботи. Однак немає поганого без добра: для таких рівнянь вже, як правило, не ставиться питання про те, яке з його коренів належать заданому проміжку. Давай не будемо ходити навколо та навколо, а одразу тригонометричні приклади.

приклад 1.

Вирішити рівняння і знайти те коріння, яке належить відрізку.

Рішення:

У нас з'являється знаменник, який не повинен дорівнювати нулю! Тоді вирішити це рівняння - це все одно, що вирішити систему

Розв'яжемо кожне з рівнянь:

А тепер друге:

Тепер давай подивимося на серію:

Ясно, що нам не підходить варіант, тому що при цьому у нас обнулюється знаменник (див. формулу коріння другого рівняння)

Якщо ж - то все гаразд, і знаменник не дорівнює нулю! Тоді коріння рівняння наступне: , .

Тепер проводимо відбір коренів, що належать до проміжку.

- не підходить - підходить
- підходить - підходить
перебір перебір

Тоді коріння наступне:

Бачиш, навіть поява невеликої перешкоди у вигляді знаменника істотно позначилося на вирішенні рівняння: ми відкинули серію коренів, що нуляли знаменник. Ще складніше може бути справа, якщо тобі трапляться тригонометричні приклади мають ірраціональність.

приклад 2.

Розв'яжіть рівняння:

Рішення:

Ну, хоча б не треба відбирати коріння і то добре! Давай спочатку розв'яжемо рівняння, незважаючи на ірраціональність:

І що це все? Ні, на жаль, так було б дуже просто! Потрібно пам'ятати, що під коренем можуть стояти лише невід'ємні числа. Тоді:

Вирішення цієї нерівності:

Тепер залишилося з'ясувати, чи не потрапила ненароком частина коріння першого рівняння туди, де не виконується нерівність.

Для цього можна знову скористатися таблицею:

: , але Ні!
Так!
Так!

Таким чином, у мене «випав» один із коренів! Він виходить, якщо покласти. Тоді відповідь можна записати у такому вигляді:

Відповідь:

Бачиш, корінь вимагає ще більшої уваги! Ускладнюємо: нехай тепер у мене під корінням стоїть тригонометрична функція.

Приклад 3.

Як і раніше: спочатку розв'яжемо кожне окремо, а потім подумаємо, що ж ми наробили.

Тепер друге рівняння:

Тепер найскладніше - з'ясувати, чи не виходять негативні значення під арифметичним коренем, якщо ми підставимо туди коріння з першого рівняння:

Число треба розуміти як радіани. Так як радіана – це приблизно градусів, то радіани – порядку градусів. Це кут другої чверті. Косинус другої чверті має якийсь знак? Мінус. А синус? Плюс. Так що можна сказати про вираз:

Воно менше за нуль!

А значить – не є коренем рівняння.

Тепер черга.

Порівняємо це число з нулем.

Котангенс - функція спадна в 1 чверті (чим менше аргумент, тим більший котангенс). радіани – це приблизно градусів. В той же час

так, то, а значить і
,

Відповідь: .

Чи може бути складніше? Будь ласка! Буде важче, якщо під коренем, як і раніше, тригонометрична функція, а друга частина рівняння - знову тригонометрична функція.

Чим більше тригонометричних прикладів, тим краще дивись далі:

Приклад 4.

Корінь не годиться, через обмеженість косинуса

Тепер друге:

Водночас за визначенням кореня:

Треба згадати одиничне коло: саме ті чверті, де синус менший за нуль. Які це чверті? Третя та четверта. Тоді нас цікавитимуть ті рішення першого рівняння, які лежать у третій чи четвертій чверті.

Перша серія дає коріння, що лежать на перетині третьої та четвертої чверті. Друга ж серія - їй діаметрально протилежна - і породжує коріння, що лежить на межі першої та другої чверті. Тож ця серія нам не підходить.

Відповідь: ,

І знову тригонометричні приклади з «важкою ірраціональністю». Мало того, що в нас знову під корінням тригонометрична функція, то тепер вона ще й у знаменнику!

Приклад 5.

Ну, нічого не поробиш - робимо як і раніше.

Тепер працюємо зі знаменником:

Я не хочу вирішувати тригонометричну нерівність, а тому вчиню хитро: візьму і підставлю в нерівність мої серії коріння:

Якщо – парне, то маємо:

оскільки всі кути виду лежать у четвертій чверті. І знову сакральне питання: який знак синуса у четвертій чверті? Негативний. Тоді нерівність

Якщо ж непарне, то:

В якій чверті лежить кут? Це кут другої чверті. Тоді всі кути – знову кути другої чверті. Синус там позитивний. Саме те, що треба! Значить, серія:

Підходить!

Так само розуміємося з другою серією коренів:

Підставляємо в нашу нерівність:

Якщо – парне, то

Кути першої чверті. Синус там позитивний, отже, серія підходить. Тепер якщо - непарне, то:

теж підходить!

Ну ось тепер записуємо відповідь!

Відповідь:

Ну ось, це був, мабуть, найважчий випадок. Тепер я пропоную тобі завдання для самостійного вирішення.

Тренування

  1. Розв'яжіть і знайдіть усі корені рівняння, що належать відрізку.

Рішення:


  1. Перше рівняння:
    або
    ОДЗ кореня:

    Друге рівняння:

    Відбір коренів, що належать до проміжку

    Відповідь:

  2. Або
    або
    Але

    Розглянемо: . Якщо – парне, то
    - не підходить!
    Якщо - непарне, - підходить!
    Отже, наше рівняння має такі серії коренів:
    або
    Відбір коренів на проміжку:

    - не підходить - підходить
    - підходить - багато
    - підходить багато

    Відповідь: , .

    Або
    Оскільки, то при тангенсі не визначено. Відкидаємо цю серію коренів!

    Друга частина:

    У той же час по ОДЗ потрібно, щоб

    Перевіряємо знайдене у першому рівнянні коріння:

    Якщо знак:

    Кути першої чверті, де тангенс є позитивним. Не підходить!
    Якщо знак:

    Кут четвертої чверті. Там тангенс негативний. Підходить. Записуємо відповідь:

Відповідь: , .

Ми разом розібрали у цій статті складні тригонометричні приклади, але тобі варто вирішувати рівняння самому.

КОРОТКИЙ ВИКЛАД І ОСНОВНІ ФОРМУЛИ

Тригонометричне рівняння - це рівняння, у якому невідома перебуває суворо під знаком тригонометричної функції.

Існує два способи розв'язання тригонометричних рівнянь:

Перший спосіб – з використанням формул.

Другий спосіб - через тригонометричне коло.

Дозволяє вимірювати кути, знаходити їх синуси, косинуси та інше.

Тригонометричні рівняння .

Найпростіші тригонометричні рівняння .

Методи розв'язання тригонометричних рівнянь.

Тригонометричні рівняння. Рівняння, що містить невідоме під знаком тригонометричної функції, називається тригонометричним.

Найпростіші тригонометричні рівняння.



Методи розв'язання тригонометричних рівнянь. Розв'язання тригонометричного рівняння складається з двох етапів: перетворення рівняннядля отримання його найпростішоговиду (див. вище) і Рішенняотриманого найпростішого тригонометричного рівняння.Існує сім основних методів розв'язання тригонометричних рівнянь

1. Алгебраїчний метод. Цей метод нам добре відомий з алгебри

(Метод заміни змінної та підстановки).

2. Розкладання на множники. Цей метод розглянемо на прикладах.

П р і м е р 1. Розв'язати рівняння: sin x+ cos x = 1 .

Розв'язання. Перенесемо всі члени рівняння вліво:

Sin x+ cos x – 1 = 0 ,

Перетворимо і розкладемо на множники вираз у

Лівою частиною рівняння:

П р і м е р 2. Розв'язати рівняння: cos 2 x+ sin x· cos x = 1.

Рішення. cos 2 x+ sin x· cos x sin 2 x- cos 2 x = 0 ,

Sin x· cos x– sin 2 x = 0 ,

Sin x· (cos x– sin x ) = 0 ,

П р і м е р 3. Розв'язати рівняння: cos 2 x- cos 8 x+ cos 6 x = 1.

Рішення. cos 2 x+ cos 6 x= 1 + cos 8 x,

2 cos 4 x cos 2 x= 2 cos² 4 x ,

Cos 4 x · (cos 2 x- cos 4 x) = 0 ,

Cos 4 x · 2 sin 3 x· sin x = 0 ,

1). cos 4 x= 0, 2). sin 3 x= 0, 3). sin x = 0 ,

3.

Приведення до однорідного рівняння. Рівняння називається однорідним від носіє sinі cos , якщо всі його члени одного і того ж ступеня щодо sinі cosодного і того ж кута. Щоб розв'язати однорідне рівняння, треба:

а) перенести всі його члени до лівої частини;

б) винести всі загальні множники за дужки;

в) прирівняти всі множники та дужки;

г) дужки, прирівняні нулю, дають однорідне рівняння меншого ступеня, яке слід розділити на

cos(або sin) у старшому ступені;

д) вирішити отримане рівняння алгебри щодоtan .

П р і м е р. Вирішити рівняння: 3 sin 2 x+ 4 sin x· cos x+ 5 cos 2 x = 2.

Рішення. 3sin 2 x+ 4 sin x· cos x+ 5 cos 2 x= 2sin 2 x+ 2cos 2 x ,

Sin 2 x+ 4 sin x· cos x+ 3 cos 2 x = 0 ,

Tan 2 x+ 4 tan x + 3 = 0 , звідси y 2 + 4y +3 = 0 ,

Коріння цього рівняння:y 1 = - 1, y 2 = - 3, звідси

1) tan x= -1, 2) tan x = –3,

4. Перехід до половинного кута. Розглянемо цей метод на прикладі:

П р і м е р. Вирішити рівняння: 3 sin x– 5 cos x = 7.

Рішення. 6 sin ( x/ 2) · cos ( x/ 2) – 5 cos ² ( x/ 2) + 5 sin ² ( x/ 2) =

7 sin ² ( x/ 2) + 7 cos ² ( x/ 2) ,

2 sin ² ( x/ 2) - 6 sin ( x/ 2) · cos ( x/ 2) + 12 cos ² ( x/ 2) = 0 ,

tan ² ( x/ 2) - 3 tan ( x/ 2) + 6 = 0 ,

. . . . . . . . . .

5. Введення допоміжного кута. Розглянемо рівняння виду:

a sin x + b cos x = c ,

Де a, b, c- Коефіцієнти;x- Невідоме.

Тепер коефіцієнти рівняння мають властивості синуса і косинуса , а саме: модуль ( абсолютне значення ) кожного

Тригонометричні рівняння – тема не найпростіша. Аж надто вони різноманітні.) Наприклад, такі:

sin 2 x + cos3x = ctg5x

sin(5x+π /4) = ctg(2x-π /3)

sinx + cos2x + tg3x = ctg4x

І тому подібне...

Але в цих (і всіх інших) тригонометричних монстрів є дві загальні та обов'язкові ознаки. Перший - ви не повірите - в рівняннях присутні тригонометричні функції. Другий: всі вирази з іксом знаходяться всередині цих функцій.І лише там! Якщо ікс з'явиться десь зовні,наприклад, sin2x + 3x = 3,це вже буде рівняння змішаного типу. Такі рівняння потребують індивідуального підходу. Тут ми їх не розглядатимемо.

Злі рівняння в цьому уроці ми теж вирішувати не будемо.) Тут ми розбиратимемося з найпростішими тригонометричними рівняннями.Чому? Та тому, що рішення будь-якихТригонометричних рівнянь складається з двох етапів. На першому етапі зле рівняння шляхом різних перетворень зводиться до простого. З другого краю - вирішується це найпростіше рівняння. По іншому ніяк.

Так що, якщо на другому етапі у вас проблеми – перший етап особливого сенсу не має.)

Як виглядають елементарні тригонометричні рівняння?

sinx = а

cosx = а

tgx = а

ctgx = а

Тут а позначає будь-яке число. Будь-яке.

До речі, всередині функції може бути не чистий ікс, а якийсь вираз, типу:

cos(3x+π /3) = 1/2

і тому подібне. Це ускладнює життя, але методі розв'язання тригонометричного рівняння не позначається.

Як розв'язувати тригонометричні рівняння?

Тригонометричні рівняння можна вирішувати двома шляхами. Перший шлях: з використанням логіки та тригонометричного кола. Цей шлях ми розглянемо тут. Другий шлях – з використанням пам'яті та формул – розглянемо у наступному уроці.

Перший шлях зрозумілий, надійний, і його важко забути. Логіка сильніша за пам'ять!)

Вирішуємо рівняння за допомогою тригонометричного кола.

Включаємо елементарну логіку та вміння користуватися тригонометричним колом. Не вмієте! Однак... Важко ж вам у тригонометрії прийде...) Але не біда. Загляньте в уроки "Тригонометричне коло...... Що це таке?" та "Відлік кутів на тригонометричному колі". Там просто все. На відміну від підручників...)

Ах, ви знаєте!? І навіть освоїли "Практичну роботу з тригонометричним колом"!? Прийміть вітання. Ця тема буде вам близька і зрозуміла. Що особливо тішить, тригонометричному колу байдуже, яке рівняння ви вирішуєте. Синус, косинус, тангенс, котангенс – йому все одно. Принцип рішення один.

Ось і беремо будь-яке елементарне тригонометричне рівняння. Хоча б це:

cosx = 0,5

Потрібно знайти ікс. Якщо говорити людською мовою, потрібно знайти кут (ікс), косинус якого дорівнює 0,5.

Як ми використовували коло раніше? Ми малювали на ньому ріг. У градусах чи радіанах. І відразу бачили тригонометричні функції цього кута. Зараз вчинимо навпаки. Намалюємо на колі косинус, що дорівнює 0,5 і відразу побачимо кут. Залишиться лише записати відповідь.) Так-так!

Малюємо коло і відзначаємо косинус, що дорівнює 0,5. На осі косінусів, зрозуміло. Ось так:

Тепер намалюємо кут, який дає нам косинус. Наведіть курсор мишки на малюнок (або торкніться картинки на планшеті), та побачитецей самий кут х.

Косинус якого кута дорівнює 0,5?

х = π /3

cos 60°= cos( π /3) = 0,5

Дехто скептично хмикне, так... Мовляв, чи варто було коло городити, коли й так все ясно... Можна, звичайно, хмикати...) Але річ у тому, що це помилкова відповідь. Точніше, недостатній. Знавці кола розуміють, що тут ще ціла купа кутів, які теж дають косинус, що дорівнює 0,5.

Якщо провернути рухливий бік ОА на повний обіг, точка А потрапить у вихідне положення. З тим самим косинусом, рівним 0,5. Тобто. кут змінитьсяна 360° або 2π радіан, а косинус – ні.Новий кут 60° + 360° = 420° також буде рішенням рівняння, т.к.

Таких повних обертів можна накрутити безліч... І всі ці нові кути будуть рішеннями нашого тригонометричного рівняння. І їх треба якось записати у відповідь. Усе.Інакше рішення не вважається, так...)

Математика вміє це робити просто та елегантно. В одній короткій відповіді записувати нескінченна безлічрішень. Ось як це виглядає для нашого рівняння:

х = π /3 + 2π n, n ∈ Z

Розшифрую. Все-таки писати осмисленоприємніше, ніж тупо малювати якісь загадкові літери, правда?)

π /3 - це той самий кут, який ми побачилина колі та визначилипо таблиці косінусів.

- Це один повний оборот у радіанах.

n - кількість повних, тобто. цілихоборотів. Зрозуміло, що n може бути 0, ±1, ±2, ±3.... і так далі. Що й зазначено коротким записом:

n ∈ Z

n належить ( ) безлічі цілих чисел ( Z ). До речі, замість літери n цілком можуть вживатися літери k, m, t і т.д.

Цей запис означає, що ви можете взяти будь-яке ціле n . Хоч -3, хоч 0, хоч +55. Яке хочете. Якщо підставте це число в запис відповіді, отримайте конкретний кут, який обов'язково буде вирішенням нашого суворого рівняння.

Або, іншими словами, х = π /3 - це єдиний корінь із нескінченної множини. Щоб отримати все інше коріння, достатньо до π /3 додати будь-яку кількість повних оборотів ( n ) у радіанах. Тобто. 2π n радіан.

Усе? Ні. Я спеціально насолоду розтягую. Щоб запам'яталося краще.) Ми отримали лише частину відповідей до нашого рівняння. Цю першу частину рішення я запишу ось як:

х 1 = π /3 + 2π n, n ∈ Z

х 1 - не один корінь, це ціла серія коренів, записана у короткій формі.

Але є ще кути, які теж дають косинус, що дорівнює 0,5!

Повернемося до нашої картинки, за якою записували відповідь. Ось вона:

Наводимо мишку на картинку та бачимоще один кут, який також дає косинус 0,5.Як ви вважаєте, чому він дорівнює? Трикутнички однакові... Так! Він дорівнює куту х , тільки відкладено у негативному напрямку. Це кут -х. Але ікс ми вже вирахували. π /3 або 60 °. Отже, можна сміливо записати:

х 2 = - π /3

Ну і, зрозуміло, додаємо всі кути, які виходять через повні оберти:

х 2 = - π /3 + 2π n, n ∈ Z

Ось тепер все.) По тригонометричному колі ми побачили(хто розуміє, звичайно) Усекути, що дають косинус, рівний 0,5. І записали ці кути у короткій математичній формі. У відповіді вийшло дві нескінченні серії коренів:

х 1 = π /3 + 2π n, n ∈ Z

х 2 = - π /3 + 2π n, n ∈ Z

Це правильна відповідь.

Сподіваюся, загальний принцип розв'язання тригонометричних рівняньза допомогою кола зрозумілий. Зазначаємо на колі косинус (синус, тангенс, котангенс) із заданого рівняння, малюємо відповідні йому кути та записуємо відповідь.Звичайно, треба збагнути, що за кути ми побачилина колі. Іноді це не так очевидно. Ну так я й казав, що тут логіка потрібна.)

Наприклад розберемо ще одне тригонометричне рівняння:

Прошу врахувати, що число 0,5 - це не можливе число в рівняннях!) Просто мені його писати зручніше, ніж коріння і дроби.

Працюємо за загальним принципом. Малюємо коло, відзначаємо (на осі синусів, звичайно!) 0,5. Малюємо відразу всі кути, що відповідають цьому синусу. Отримаємо ось таку картину:

Спочатку знаємося з кутом х у першій чверті. Згадуємо таблицю синусів та визначаємо величину цього кута. Справа нехитра:

х = π /6

Згадуємо про повні обороти і, з чистою совістю, записуємо першу серію відповідей:

х 1 = π /6 + 2π n, n ∈ Z

Половина справи зроблено. А ось тепер треба визначити другий кут...Це хитріші, ніж у косинусах, так... Але логіка нас врятує! Як визначити другий кут через х? Та легко! Трикутнички на картинці однакові, і червоний кут х дорівнює куту х . Тільки відрахований він від кута в негативному напрямку. Тому і червоний.) А нам відповіді потрібен кут, відрахований правильно, від позитивної півосі ОХ, тобто. від кута 0 градусів.

Наводимо курсор на малюнок і все бачимо. Перший кут я забрав, щоб не ускладнював картинку. Кут, що цікавить нас (намальований зеленим) буде дорівнює:

π - х

Ікс ми знаємо, це π /6 . Отже, другий кут буде:

π - π /6 = 5π /6

Знову згадуємо про добавку повних обертів та записуємо другу серію відповідей:

х 2 = 5π /6 + 2π n, n ∈ Z

От і все. Повноцінна відповідь складається з двох серій коріння:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Рівняння з тангенсом і котангенсом можна легко вирішувати за тим самим загальним принципом розв'язання тригонометричних рівнянь. Якщо, звичайно, знаєте, як намалювати тангенс та котангенс на тригонометричному колі.

У наведених вище прикладах я використав табличне значення синуса та косинуса: 0,5. Тобто. одне з тих значень, які учень знати зобов'язаний.А тепер розширимо наші можливості на всі інші значення.Вирішувати, так вирішувати!

Отже, нехай нам треба вирішити таке тригонометричне рівняння:

Такого значення косинуса у коротких таблицях немає. Холоднокровно ігноруємо цей страшний факт. Малюємо коло, відзначаємо на осі косінусів 2/3 і малюємо відповідні кути. Отримуємо ось таку картинку.

Розбираємось, для початку, з кутом у першій чверті. Знати б, чому дорівнює ікс, одразу відповідь записали б! Не знаємо... Провал!? Спокій! Математика своїх у біді не кидає! Вона на цей випадок вигадала арккосинуси. Не в курсі? Даремно. З'ясуйте, що це набагато простіше, ніж ви думаєте. За цим посиланням жодного складного заклинання щодо "зворотних тригонометричних функцій" немає... Зайве це в цій темі.

Якщо ви знаєте, досить сказати собі: "Ікс - це кут, косинус якого дорівнює 2/3". І відразу, чисто за визначенням арккосинусу, можна записати:

Згадуємо про додаткові звороти та спокійно записуємо першу серію коренів нашого тригонометричного рівняння:

х 1 = arccos 2/3 + 2π n, n ∈ Z

Майже автоматично записується і друга серія коренів, для другого кута. Все те саме, тільки ікс (arccos 2/3) буде з мінусом:

х 2 = - arccos 2/3 + 2π n, n ∈ Z

І всі справи! Це правильна відповідь. Навіть простіше, ніж із табличними значеннями. Нічого згадувати не треба.) До речі, найуважніші помітять, що ця картинка з рішенням через арккосинус нічим, по суті, не відрізняється від картинки рівняння cosx = 0,5.

Саме так! Загальний принцип на те та загальний! Я спеціально намалював дві майже однакові картинки. Коло нам показує кут х за його косинусом. Табличний це косинус, чи ні – колу невідомо. Що це за кут, π /3, або арккосинус який – це вже нам вирішувати.

З синусом та сама пісня. Наприклад:

Знову малюємо коло, відзначаємо синус, що дорівнює 1/3, малюємо кути. Виходить така картина:

І знову картинка майже та сама, що й для рівняння sinx = 0,5.Знову починаємо з кута першої чверті. Чому дорівнює ікс, якщо його синус дорівнює 1/3? Не питання!

Ось і готова перша пачка коріння:

х 1 = arcsin 1/3 + 2π n, n ∈ Z

Розбираємось з другим кутом. У прикладі з табличним значенням 0,5 він дорівнював:

π - х

Так і тут він буде такий самий! Тільки ікс інший, arcsin 1/3. Ну і що!? Можна сміливо записувати другу пачку коріння:

х 2 = π - arcsin 1/3 + 2π n, n ∈ Z

Це абсолютно правильна відповідь. Хоча й не дуже звично. Зате зрозуміло, сподіваюся.)

Ось так вирішуються тригонометричні рівняння за допомогою кола. Цей шлях наочний і зрозумілий. Саме він рятує у тригонометричних рівняннях з відбором коренів на заданому інтервалі, у тригонометричних нерівностях – ті взагалі вирішуються практично завжди по колу. Коротше, у будь-яких завданнях, які трохи складніші за стандартні.

Застосуємо знання практично?)

Розв'язати тригонометричні рівняння:

Спочатку простіше, прямо з цього уроку.

Тепер складніше.

Підказка: тут доведеться поміркувати над колом. Особисто.)

А тепер зовні прості... Їх ще окремими випадками називають.

sinx = 0

sinx = 1

cosx = 0

cosx = -1

Підказка: тут треба збагнути по колу, де дві серії відповідей, а де одна... І як замість двох серій відповідей записати одну. Так так, щоб жоден корінь із нескінченної кількості не загубився!)

Ну і зовсім прості):

sinx = 0,3

cosx = π

tgx = 1,2

ctgx = 3,7

Підказка: тут треба знати, що таке арксинус, арккосинус? Що таке арктангенс, арккотангенс? Найпростіші визначення. Зате згадувати жодних табличних значень не треба!)

Відповіді, зрозуміло, безладно):

х 1= arcsin0,3 + 2π n, n ∈ Z
х 2= π - arcsin0,3 + 2

Чи не все виходить? Буває. Прочитайте урок ще раз. Тільки вдумливо(є таке застаріле слово...) І за посиланнями походьте. Основні посилання - про коло. Без нього в тригонометрії – як дорогу переходити із зав'язаними очима. Іноді виходить.)

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

При вирішенні багатьох математичних завдань, особливо тих, що зустрічаються до 10 класу, порядок виконуваних дій, що призведуть до мети, визначено однозначно. До таких завдань можна віднести, наприклад, лінійні та квадратні рівняння, лінійні та квадратні нерівності, дробові рівняння та рівняння, що зводяться до квадратних. Принцип успішного вирішення кожної зі згаданих завдань полягає в наступному: треба встановити, якого типу належить розв'язуване завдання, згадати необхідну послідовність дій, які призведуть до потрібного результату, тобто. відповіді, та виконати ці дії.

Очевидно, що успіх чи неуспіх у вирішенні того чи іншого завдання залежить головним чином від того, наскільки правильно визначено тип рівняння, що вирішується, наскільки правильно відтворена послідовність всіх етапів його вирішення. Вочевидь, у своїй необхідно володіти навичками виконання тотожних перетворень і обчислень.

Інша ситуація виходить з тригонометричними рівняннями.Встановити факт, що рівняння є тригонометричним, дуже легко. Складності виникають щодо послідовності дій, які призвели до правильної відповіді.

На вигляд рівняння часом буває важко визначити його тип. А не знаючи типу рівняння, майже неможливо вибрати із кількох десятків тригонометричних формул потрібну.

Щоб розв'язати тригонометричне рівняння, треба спробувати:

1. привести всі функції, що входять до рівняння до «однакових кутів»;
2. привести рівняння до «однакових функцій»;
3. розкласти ліву частину рівняння на множники тощо.

Розглянемо основні методи розв'язання тригонометричних рівнянь.

I. Приведення до найпростіших тригонометричних рівнянь

Схема розв'язання

Крок 1.Виразити тригонометричну функцію через відомі компоненти.

Крок 2Знайти аргумент функції за формулами:

cos x = a; x = ± arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Крок 3Знайти невідому змінну.

приклад.

2 cos(3x - π/4) = -√2.

Рішення.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Відповідь: ±π/4 + π/12 + 2πn/3, n Є Z.

ІІ. Заміна змінної

Схема розв'язання

Крок 1.Привести рівняння до виду алгебри щодо однієї з тригонометричних функцій.

Крок 2Позначити отриману функцію змінної t (якщо необхідно ввести обмеження на t).

Крок 3Записати та вирішити отримане рівняння алгебри.

Крок 4Зробити зворотну заміну.

Крок 5.Вирішити найпростіше тригонометричне рівняння.

приклад.

2cos 2 (x/2) - 5sin (x/2) - 5 = 0.

Рішення.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2(x/2) + 5sin(x/2) + 3 = 0.

2) Нехай sin (x/2) = t, де | t | ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 чи е = -3/2, не задовольняє умові |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Відповідь: x = π + 4πn, n Є Z.

ІІІ. Метод зниження порядку рівняння

Схема розв'язання

Крок 1.Замінити дане рівняння лінійним, використовуючи при цьому формули зниження ступеня:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 - cos 2x) / (1 + cos 2x).

Крок 2Вирішити отримане рівняння за допомогою методів І та ІІ.

приклад.

cos 2x + cos 2x = 5/4.

Рішення.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Відповідь: x = ±π/6 + πn, n Є Z.

IV. Однорідні рівняння

Схема розв'язання

Крок 1.Привести це рівняння до виду

a) a sin x + b cos x = 0 (однорідне рівняння першого ступеня)

або на вигляд

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однорідне рівняння другого ступеня).

Крок 2Розділити обидві частини рівняння на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

і отримати рівняння щодо tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Крок 3Вирішити рівняння відомими способами.

приклад.

5sin 2 x + 3sin x · cos x - 4 = 0.

Рішення.

1) 5sin 2 x + 3sin x · cos x - 4 (sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x - 4 = 0.

3) Нехай tg x = t, тоді

t 2 + 3t - 4 = 0;

t = 1 або t = -4, отже

tg x = 1 або tg x = -4.

З першого рівняння x = π/4 + πn, n Є Z; з другого рівняння x = -arctg 4 + πk, k Є Z.

Відповідь: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод перетворення рівняння за допомогою тригонометричних формул

Схема розв'язання

Крок 1.Використовуючи всілякі тригонометричні формули, привести дане рівняння до рівняння, яке вирішується методами I, II, III, IV.

Крок 2Вирішити отримане рівняння відомими методами.

приклад.

sin x + sin 2x + sin 3x = 0.

Рішення.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 або 2cos x + 1 = 0;

З першого рівняння 2x = π/2 + πn, n Є Z; із другого рівняння cos x = -1/2.

Маємо х = π/4 + πn/2, n Є Z; із другого рівняння x = ±(π – π/3) + 2πk, k Є Z.

Через війну х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Відповідь: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Вміння та навички вирішувати тригонометричні рівняння є дуже важливими, їхній розвиток потребує значних зусиль, як з боку учня, так і з боку вчителя.

З розв'язанням тригонометричних рівнянь пов'язані багато завдань стереометрії, фізики, та ін. Процес розв'язання таких завдань хіба що містить у собі багато знання та вміння, які набуваються при вивченні елементів тригонометрії.

Тригонометричні рівняння займають важливе місце у процесі навчання математики та розвитку особистості загалом.

Залишились питання? Не знаєте, як розв'язувати тригонометричні рівняння?
Щоб отримати допомогу репетитора – зареєструйтесь.
Перший урок – безкоштовно!

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Концепція розв'язання тригонометричних рівнянь.

  • Для розв'язання тригонометричного рівняння перетворіть його на одне або кілька основних тригонометричних рівнянь. Розв'язання тригонометричного рівняння зрештою зводиться до вирішення чотирьох основних тригонометричних рівнянь.
  • Розв'язання основних тригонометричних рівнянь.

    • Існують 4 види основних тригонометричних рівнянь:
    • sin x = a; cos x = a
    • tg x = a; ctg x = a
    • Вирішення основних тригонометричних рівнянь передбачає розгляд різних положень «х» на одиничному колі, а також використання таблиці перетворення (або калькулятора).
    • Приклад 1. sin x = 0,866. Використовуючи таблицю перетворення (або калькулятор) ви отримаєте відповідь: х = π/3. Одиничне коло дає ще одну відповідь: 2π/3. Запам'ятайте: всі тригонометричні функції періодичні, тобто їх значення повторюються. Наприклад, періодичність sin x та cos x дорівнює 2πn, а періодичність tg x та ctg x дорівнює πn. Тому відповідь записується так:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Приклад 2. х = -1/2. Використовуючи таблицю перетворення (або калькулятор) ви отримаєте відповідь: х = 2π/3. Одиничне коло дає ще одну відповідь: -2π/3.
    • x1 = 2π/3 + 2π; х2 = -2π/3 + 2π.
    • Приклад 3. tg (x – π/4) = 0.
    • Відповідь: х = π/4 + πn.
    • Приклад 4. ctg 2x = 1732.
    • Відповідь: х = π/12 + πn.
  • Перетворення, що використовуються під час вирішення тригонометричних рівнянь.

    • Для перетворення тригонометричних рівнянь використовуються алгебраїчні перетворення (розкладання на множники, приведення однорідних членів тощо) та тригонометричні тотожності.
    • Приклад 5. Використовуючи тригонометричні тотожності, рівняння sin x + sin 2x + sin 3x = 0 перетворюється на рівняння 4cos x*sin (3x/2)*cos (x/2) = 0. Таким чином, потрібно вирішити наступні основні тригонометричні рівняння: cos x = 0; sin (3x/2) = 0; cos(x/2) = 0.
    • Знаходження кутів за відомими значеннями функцій.

      • Перед вивченням методів розв'язання тригонометричних рівнянь необхідно навчитися знаходити кути за відомими значеннями функцій. Це можна зробити за допомогою таблиці перетворення чи калькулятора.
      • Приклад: соs x = 0,732. Калькулятор дасть відповідь x = 42,95 градусів. Одиничне коло дасть додаткові кути, косинус яких також дорівнює 0,732.
    • Відкладіть рішення на одиничному колі.

      • Ви можете відкласти рішення тригонометричного рівняння на одиничному колі. Рішення тригонометричного рівняння на одиничному колі є вершинами правильного багатокутника.
      • Приклад: Рішення x = π/3 + πn/2 на одиничному колі є вершинами квадрата.
      • Приклад: Рішення x = π/4 + πn/3 на одиничному колі є вершинами правильного шестикутника.
    • Методи розв'язання тригонометричних рівнянь.

      • Якщо це тригонометричне рівняння містить лише одну тригонометричну функцію, розв'яжіть це рівняння як основне тригонометричне рівняння. Якщо дане рівняння включає дві або більше тригонометричних функцій, то існують 2 методи розв'язання такого рівняння (залежно від можливості його перетворення).
        • Метод 1.
      • Перетворіть це рівняння на рівняння виду: f(x)*g(x)*h(x) = 0, де f(x), g(x), h(x) - основні тригонометричні рівняння.
      • Приклад 6. 2cos x + sin 2x = 0. (0< x < 2π)
      • Рішення. Використовуючи формулу подвійного кута sin 2x = 2*sin х*соs х, замініть sin 2x.
      • 2соs х + 2*sin х*соs х = 2cos х*(sin х + 1) = 0. Тепер розв'яжіть два основних тригонометричних рівняння: соs х = 0 і (sin х + 1) = 0.
      • Приклад 7. cos x + cos 2x + cos 3x = 0. (0< x < 2π)
      • Рішення: Використовуючи тригонометричні тотожності, перетворіть дане рівняння на рівняння виду: cos 2x(2cos x + 1) = 0. Тепер розв'яжіть два основних тригонометричні рівняння: cos 2x = 0 та (2cos x + 1) = 0.
      • Приклад 8. sin x - sin 3x = cos 2x. (0< x < 2π)
      • Рішення: Використовуючи тригонометричні тотожності, перетворіть дане рівняння на рівняння виду: -cos 2x*(2sin x + 1) = 0. Тепер розв'яжіть два основних тригонометричні рівняння: cos 2x = 0 та (2sin x + 1) = 0.
        • Метод 2.
      • Перетворіть це тригонометричне рівняння на рівняння, що містить лише одну тригонометричну функцію. Потім замініть цю тригонометричну функцію на деяку невідому, наприклад, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t і т.д.).
      • Приклад 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0< x < 2π).
      • Рішення. У цьому рівнянні замініть (cos^2 x) на (1 - sin^2 x) (відповідно до тотожності). Перетворене рівняння має вигляд:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Замініть sin x на t. Тепер рівняння має вигляд: 5t^2 - 4t - 9 = 0. Це квадратне рівняння, що має два корені: t1 = -1 та t2 = 9/5. Другий корінь t2 не задовольняє області значень функції (-1< sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Приклад 10. tg x + 2 tg^2 x = ctg x + 2
      • Рішення. Замініть tg x на t. Перепишіть вихідне рівняння у такому вигляді: (2t + 1)(t^2 - 1) = 0. Тепер знайдіть t, а потім знайдіть х для t = tg х.
    • Особливі тригонометричні рівняння.

      • Існує кілька особливих тригонометричних рівнянь, які потребують конкретних перетворень. Приклади:
      • a * sin x + b * cos x = c; a(sin x + cos x) + b * cos x * sin x = c;
      • a*sin^2 x + b*sin x*cos x + c*cos^2 x = 0
    • Періодичність тригонометричних функцій.

      • Як згадувалося раніше, всі тригонометричні функції є періодичними, тобто їх значення повторюються через певний період. Приклади:
        • Період функції f(x) = sin x дорівнює 2π.
        • Період функції f(x) = tg x дорівнює π.
        • Період функції f(x) = sin 2x дорівнює π.
        • Період функції f(x) = cos(x/2) дорівнює 4π.
      • Якщо період вказаний у задачі, обчисліть значення "х" у межах цього періоду.
      • Примітка: розв'язання тригонометричних рівнянь – непросте завдання, яке часто призводить до помилок. Тому ретельно перевіряйте відповіді. Для цього можна використовувати графічний калькулятор, щоб побудувати графік даного рівняння R(х) = 0. У таких випадках рішення будуть представлені у вигляді десяткових дробів (тобто π замінюється на 3,14).